Меню

Аккумулятор lifepo4 контроллер заряда

Зарядное устройство для батарей LiFePO4 с индивидуальным контролем заряда каждой банки

Top Power ASIC TP5000

Михаил Гурович, США

В последние несколько лет, став доступными и популярными, получили широкое распространение литий-ионные (Li-Ion) и литий-железо-фосфатные (LiFePO4) аккумуляторы. Эти аккумуляторы, выпускаемые в различных форм-факторах и с разной емкостью, имеют замечательные электрические характеристики: высокую удельную емкость, низкое внутреннее сопротивление, постоянство напряжения во время разряда, очень низкий саморазряд, большое максимальное количество циклов заряд-разряд, высокую термостабильность и очень большой срок службы.

Но наряду со всеми этими достоинствами у LiFePO4 батарей есть и один серьезный недостаток – они очень капризны к режиму заряда и разряда. Эти батареи не любят превышения максимально допустимого для данного типа батареи напряжения в процессе зарядки и падения напряжения на батарее ниже минимально допустимого уровня при разряде на нагрузку. Нарушение этих требований обычно приводит к резкому снижению емкости батареи и уменьшению ее срока службы (максимального количества циклов заряд-разряд), а в ряде случаев и к воспламенению батареи (особенно это относится к Li-Ion батареям).

Чтобы обеспечить батарее оптимальные условия при заряде и разряде, используют специальные электронные устройства, объединенные под названием BMS (Battery Management System , т.е. система управления батареей), которые сегодня являются неотъемлемой частью любого устройства с батарейным питанием при использовании батарей с химией типа Li-Ion или LiFePO4. Назначение этих устройств состоит именно в обеспечении безопасного режима заряда и разряда батареи. BMS может быть построена различными способами, в зависимости от конструкции батареи, способа соединения и количества банок, может быть встроена в корпус батареи или быть частью зарядного устройства. Одна из характерных особенностей систем BMS – это обеспечение индивидуального контроля каждой банки в составе батареи, т.е. напряжение каждой банки находится под постоянным контролем, и система в любой момент времени точно знает, в каком состоянии находится каждая банка, и может перераспределить зарядный ток между банками, если обнаруживается разбаланс из-за того, что банки немного отличаются друг от друга и заряжаются разными темпами. Кроме того, BMS следит за напряжением каждой банки во время разряда и сигнализирует и/или отключает нагрузку, если напряжение на банке падает ниже минимально допустимого уровня. Вопросы контроля напряжения банок в процессе разряда выходят за рамки данной статьи и далее не рассматриваются.

Все эти особенности и требование надежности в работе делают системы BMS достаточно сложными устройствами.

В статье рассказывается о зарядном устройстве для батареи, составленной из четырех последовательно соединенных банок LiFePO4 (конфигурация типа 4S1P). Каждая такая банка имеет номинальное напряжение 3.2 В и, соответственно, номинальное выходное напряжение всей батареи равно 12.8 В, что делает ее идеально подходящей для замены обычных кислотных 12-вольтовых аккумуляторов.

Описываемое зарядное устройство использует индивидуальный подход к заряду каждой банки и не требует сложной схемы балансировки зарядных токов.

Зарядное устройство рассчитано на зарядку батареи, которая является съемной, т.е. в процессе эксплуатации подключается и вставляется в устройство для работы и отключается и извлекается из него, и подключается к зарядному устройству для заряда. Такие батареи используются в шуруповертах, электродрелях, электрогайковертах, в пылесосах с батарейным питанием и других подобных устройствах.

В зарядном устройстве использованы модули TP5000, которые специально разработаны для зарядки одной банки типа LiFePO4 постоянным током до 2 А (ток заряда можно изменять подбором величины токоизмерительного резистора на плате модуля) и отключением заряда при достижении напряжения на банке, равного 3.60 — 3.65 В. Cразу отметим, что модуль TP5000 может работать и с батареями типа Li-Ion; для этого на самом модуле надо установить перемычку. При этом максимальное напряжения заряда поднимается до 4.2 В, а максимальный ток заряда не изменяется.

Кроме того, преимущество модуля TP5000 еще и в том, что по окончании заряда он контролирует напряжение на банке и при необходимости автоматически подзаряжает банку, если напряжение на ней упало. Для нормальной работы модуля TP5000 необходимо постоянное входное напряжение +5 … +9 В и ток 2 А. Сам модуль TP5000 представляет собой преобразователь постоянного входного напряжения в постоянный выходной ток с контролем напряжения на выходе модуля. В зависимости от напряжения на выходе модуля (напряжения на заряжаемой банке), микросхема TP5000 выбирает один из возможных режимов работы устройства: подготовка к заряду, заряд или поддержание.

TP5000 имеет два светодиода для индикации текущего режима работы; один светодиод горит в режимах подготовки к зарядке и зарядки, второй горит в режиме поддержания. Если выход TP5000 не подключен, микросхема TP5000 чувствует отсутствие нагрузки, выходное напряжение равно входному, и светодиоды включаются и выключаются поочередно (мерцают). Кроме того, модуль TP5000 имеет вход для подключения датчика температуры заряжаемой батареи, но в данном проекте он не используется.

Вид модуля TP5000 показан на Рисунке 1.

Рисунок 1. Модуль TP5000 – вид сверху.

Основная идея, положенная в основу зарядного устройства, состоит в таком использовании нескольких модулей TP5000, чтобы каждый модуль контролировал одну банку в батарее. Такой подход обеспечивает индивидуальный контроль напряжения заряда и поддержания. Поскольку зарядное устройство рассчитывалось на работу с батареей из четырех последовательно соединенных банок, оно состоит из четырех независимых каналов заряда. В каждом канале есть источник питания AC2DC, преобразующий переменное напряжение сети в постоянное напряжение +5 В с максимальным током в 2 А. Это напряжение подается на вход модуля TP5000. Выходные провода TP5000 подключаются к выводам заряжаемой банки. Для нормальной работы зарядного устройства необходимо, чтобы батарея имела разъем с выводами от каждой банки.

Блок схема зарядного устройства вместе с заряжаемой батареей показана на Рисунке 2. Банки заряжаемой батареи обозначены как Cell_1, Cell_2, Cell_3, Cell_4. Модули TP5000 самого зарядного устройства на Рисунке 2 обозначены как TP_5000_1, TP_5000_2, TP_5000_3, TP_5000_4. Источники питания каждого канала обозначены как AC2DC_1, AC2DC_2, AC2DC_3, AC2DC_4. Цифра в конце обозначения соответствует номеру канала зарядного устройства. Напряжение переменного тока подается на схему через разъем «Вход AC» и предохранитель F1.

Рисунок 3. Принципиальная схема зарядного устройства.

Теперь перейдем к принципиальной схеме всего зарядного устройства (Рисунок 3) и его компонентов. Назначение блоков TP_5000_1, TP_5000_2, TP_5000_3, TP_5000_4, AC2DC_1, AC2DC_2, AC2DC_3, AC2DC_4 было обсуждено выше. Для подключения к заряжаемой батарее используется разъем «К батарее». В схеме предусмотрен дополнительный разъем «К вольтметру», все контакты которого подключены параллельно контактам разъема «К батарее», и назначение которого – подключение внешнего вольтметра для контроля работы устройства. Монтировать этот разъем не обязательно.

Если зарядное устройство планируется использовать только для зарядки батарей конфигурации 4S, то разъемы «К батарее» и «К вольтметру» должны иметь только 5 контактов. Автор использовал разъемы с 26 контактами, так как планировал дальнейшую модификацию этого зарядного устройства.

Рассмотрим схему блока TP_5000_1 (остальные блоки идентичны первому). Схема блока показана на Рисунке 4. Линии Charger_Plus и Charger_Minus подают напряжение +5 В от источника питания канала на модуль TP5000. Линии Cell_Plus и Cell_Minus идут на разъемы «К батарее» и «К вольтметру», и далее к заряжаемой банке в батарее. Блокировочные конденсаторы C2 , C5 уменьшают возможные ВЧ помехи на линиях. Светодиоды LED_CHARGE_ON_1 и LED_IDLE_1 показывают текущее состояние модуля TP5000.

Рисунок 4. Схема блока TP_5000_1.

Теперь рассмотрим блок AC2DC_1 (остальные блоки абсолютно идентичны первому). Его схема показана на Рисунке 5.

Рисунок 5. Схема блока AC2DC_1.

Как видно из схемы, блок предельно прост. Он состоит из источника постоянного тока AC1 типа HAW10-220S05, который подключается к сети переменного тока (линии AC_N_IN и AC_L_IN) и выдает на выход (линии DC_Minus и DC_Plus) постоянное напряжение +5 В с максимальным током 2 А.

Рисунок 6. Собранное устройство – вид сверху.

Теперь несколько слов о конструкции устройства. Готовое устройство показано на Рисунке 6 (вид сверху), Рисунке 7 (вид снизу) и Рисунке 8.

Рисунок 7. Собранное устройство – вид снизу.

На Рисунке 8 изображено зарядное устройство в работе с подключенной батарей LiFePO4 конфигурации 4S1P и вольтметром, подключенным ко второму разъему и показывающим напряжение на каждой банке и общее напряжение на батарее. Видно, что батарея еще не полостью заряжена – напряжение на ней равно 14.3 В, тогда как напряжение на полностью заряженной батарее должно быть в диапазоне 14.4-14.6 В. Видно также, что в каждом из каналов горит светодиод LED_CHARGE_ON, показывающий, что канал находится в режиме зарядки.

Рисунок 8. Зарядное устройство в работе.

Рекомендации по сборке устройства

Kак видно из принципиальной схемы, ключевой элемент устройства – зарядный модуль TP5000. На рынке представлено несколько вариантов этого модуля. Все они собраны на микросхеме TP5000 и имеют одинаковую принципиальную схему, но расположением выводов и размерами могут отличаться.

Второй по значимости элемент – источник питания AC_1. Автор использовал источник типа HAW10-220S05 с выходными параметрами +5 В/ 2 А. Любой другой источник с аналогичными параметрами подойдет для работы в данном проекте. Такие источники продаются в разных вариантах исполнения с разным расположением выводов и габаритами. Остальные элементы проекта стандартные, и их конкретный выбор – дело вкуса и возможностей.

Учитывая разницу в расположении выводов и габаритах используемых компонентов, при повторении конструкции автор рекомендует, прежде всего, приобрести компоненты, и уже после этого решать, каким образом их скомпоновать.

Зарядное устройство было собрано в двух экземплярах. Оба модуля используются для зарядки батарей конфигурации 4S1P емкостью 2 А·ч и 20 А·ч уже более года без проблем или нареканий.

Источник

Как заряжать LiFePO4 аккумуляторы

LiFePO4 — это тип литиевых аккумуляторов в которых катодом (положительным электродом) служит феррофосфат лития, а анодом (отрицательным электродом) — графит. По сравнению со свинцово-кислотными литий железо-фосфатные батареи обладают в несколько раз большей удельной емкостью и сроком службы. Благодаря чрезвычайно прочной кристаллической структуре фосфата железа, не разрушающегося при многократном приеме и возврате ионов лития эти аккумуляторы одни из самых долгоживущих в настоящее время.

Зарядка LiFePO4 аккумуляторов

LiFePO4 аккумуляторы заряжают постоянным током, постоянным напряжением либо комбинацией этих двух методов. При двухступенчатой зарядке напряжение сначала повышают постоянным током до 14,4-14,6 Вольт, а затем при постоянном напряжении происходит насыщение аккумулятора. Один этап зарядки позволяет аккумулятору набрать примерно 90- 95% емкости, два — 100%.

Характеристики типичной литий-железо-фосфатной аккумуляторной батареи:

Посмотреть общие характеристики аккумулятора

» data-lang=»Russian» data-override=»<"emptyTable":"","info":"","infoEmpty":"","infoFiltered":"","lengthMenu":"","search":"","zeroRecords":"","exportLabel":"","file":"Russian">» data-translation=»< "processing": "Подождите. ", "search": "Поиск:", "lengthMenu": "Показать _MENU_ записей", "info": "Записи с _START_ до _END_ из _TOTAL_ записей", "infoEmpty": "Записи с 0 до 0 из 0 записей", "infoFiltered": "(отфильтровано из _MAX_ записей)", "infoPostFix": "", "loadingRecords": "Загрузка записей. ", "zeroRecords": "Записи отсутствуют.", "emptyTable": "В таблице отсутствуют данные", "paginate": < "first": "Первая", "previous": "Предыдущая", "next": "Следующая", "last": "Последняя" >, «aria»: < "sortAscending": ": активировать для сортировки столбца по возрастанию", "sortDescending": ": активировать для сортировки столбца по убыванию" >>» data-merged=»[]» data-responsive-mode=»0″ data-from-history=»0″ >

Читайте также:  Портативный аккумулятор для ноута
Характеристика Значение
Защитное напряжение при перезаряде, В/яч 3,8± 0,025
Пороговое напряжение для сброса защиты при переразряде, В/яч 3,6± 0,025
Порядок отключения защиты Напряжение ниже порогового
Защитное напряжение при переразряде, В/яч 2,0± 0,08
Пороговое напряжение для сброса защиты при переразряде, В/яч 2,3± 0,1
Порядок отключения защиты Зарядка выше порогового напряжения
Защита от перегрузки по току, А 350
Задержка срабатывания защиты, с 0,5-1,5
Порядок отключения защиты Сброс нагрузки до допустимого значения
Защита от перегрева, С 65± 5
Сброс защиты при перегреве, С 50± 10

Когда заряжать LiFePO4 аккумулятор

Если LiFePO4 аккумулятор разряжен не полностью, заряжать его после каждого использования не обязательно. Сульфатации, из-за которой уменьшается емкость частично заряженного свинцово-кислотного аккумулятора, у литий-железо-фосфатных батарей не бывает. Однако если система управления отсоединяет аккумулятор от нагрузки из-за низкого напряжения, лучше зарядить его немедленно.

Температура зарядки

LiFePO4 аккумуляторы заряжают при температуре от 0 до 40 С. Некоторые, но не все, безопасно заряжать при температурах ниже 0 С. При отрицательной температуре зарядный ток уменьшают до 0,05-0,1С (5-10% от емкости аккумулятора)

От перегрева аккумулятор защищает система управления. Но температуру может контролировать и зарядное устройство у которого есть температурный датчик. Такое зарядное снижает напряжение, если аккумулятор нагревается свыше 20 С и отключается если его температура достигает 55 С. Зарядное устройство дублирует функции BMS и создает дополнительный уровень защиты, который первым сработает в случае возникновения аварийной ситуации

Последовательное и параллельное соединение

Напряжение последовательно или параллельно соединяемых аккумуляторов должно быть одинаковым. Разница не должна превышать 50 мВ (Точные значения дает производитель аккумуляторной батареи). Одинаковое напряжение снижает вероятность появления дисбаланса во время эксплуатации. Если напряжения отличаются более чем на 50 мВ (0,05 В), то перед соединением аккумуляторы необходимо зарядить по отдельности одним и тем же зарядным устройством, а затем вновь проверить состояние спустя несколько часов.

Контроль за состоянием аккумулятора

Вольтметр не дает точного представления о состоянии LiFePO4 аккумулятора. Для определения его заряженности лучше использовать счетчик амперчасов или батарейный монитор. Подробнее о контроле аккумуляторов

Зарядка от генератора двигателя

  • На многих автомобилях и на большинстве катеров выходное напряжение генератора постоянное. Это значит, что в течении всего времени работы двигателя аккумулятор будет находится под повышенным напряжением. Срок службы аккумулятора в таких условиях сократится
  • На автомобилях с двигателями EURO 5/6 напряжение генератора зависит от режима движения и изменяется от 11,5 до 15,5 Вольт. При таком напряжении LiFePO4 аккумулятор заряжаться не будет, а колебания напряжения станут причиной постоянного срабатывания защиты
  • Ток автомобильного или лодочного генератора может оказаться выше допустимого для аккумулятора
  • Разряженный аккумулятор создаст для генератора длительную нагрузку близкую к максимальной. Работая на полной мощности генератор перегреется и при недостаточном охлаждении может сгореть
  • Если BMS разорвет соединения между аккумулятором и генератором во время работы двигателя, скачек напряжения может повредить диоды и регулятор генератора DC-DC устройство, установленное между стартовым и сервисным литиевым аккумуляторами устраняет описанные проблемы, защищает генератор и заряжает литий-железо-фосфатный аккумулятор в правильном режиме

Эти устройства позволяют быстро и безопасно заряжать LiFePO4 аккумуляторы от генератора автомобильного или лодочного двигателя:

Система управления аккумулятором

Литий-железо-фосфатные ячейки безопасно работают в диапазоне от 2 до 4,2 Вольт. По сравнению с другими типами литиевых элементов они более устойчивы к перенапряжению. Тем не менее, приложенное в течении продолжительного времени повышенное напряжение приводит к образованию металлического лития на аноде и навсегда ухудшает рабочие характеристики аккумулятора. Материал катода окисляется и становится менее стабильным, а выделяющийся диоксид углерода повышает давление в ячейках.

Зарядное устройство приостанавливает работу по сигналу BMS литий-железо-фосфатного аккумулятора, снимает напряжение с аккумулятора и создает дополнительный уровень защиты. Если в аварийной ситуации BMS выдает 0 Вольт, используется разъем BMS 1. Если высокий уровень сигнала (положительное напряжение), BMS 2. В обоих случаях устройство вновь запускается, после того как устранена причина отключения и аккумулятор вернулся в рабочее состояние

Система управления ограничивает максимальное напряжение каждого элемента и аккумуляторной батареи в целом. Защита срабатывает, если напряжение ячейки превышает 3,8 Вольт, а напряжение всего аккумулятора 15,2-15,6 Вольт.

Разряд аккумулятора ниже определенного уровня также недопустим. При напряжении ячейки меньше 2,0 В материал электродов начинает разрушаться, поэтому минимально рекомендуемое напряжение для большинства аккумуляторов 10,5-11,0 Вольт.

Система управления предохраняет литиевый аккумулятор от перезарядки, чрезмерного разряда и короткого замыкания. Но полагаться на одну только BMS нельзя. Первым уровнем защиты должно стать зарядное устройство и подключаемое к аккумуляторной батарее оборудование

Напряжения зарядки и емкость

Если напряжение зарядного устройства ниже определенного уровня, реакции в аккумуляторе не протекают. Если выше, ионы покидают катод и внедряются в кристаллическую структуру материала анода. Процесс происходит благодаря силе, «вбивающей» ионы внутрь кристалла. Чем больше сила, тем больше ионов проникнет в кристалл, но тем большую нагрузку он испытывает. Таким образом заряженность аккумулятора зависит от напряжения зарядки

Читайте также:  Аккумуляторы csb 12v 5ah

LiFePO4 ячейки 26650 заряжались током 1,6 А до определенного напряжения, после чего напряжение ограничивалось и ток снижался до 30мА. Заряженные ячейки разряжались током 2,5 А (около 1С) до 2,6 Вольт. Видно, что заряженность аккумулятора возрастает с увеличением напряжения. При напряжении 3 Вольта она совсем небольшая, но существенно возрастает при 3,3 Вольтах. При напряжениях 3,4 и 4,2 В аккумуляторы набирали практически одинаковую емкость. Разница составила около 3%.

При низком пороговом напряжении литий-железо-фосфатный аккумулятор заряжается не полностью. Это уменьшает время его непрерывной работы, но не влияет на срок службы как у свинцово-кислотного. Зато пониженное напряжение снижает стресс аккумулятора во время зарядки.

Литий железо-фосфатные элементы можно безопасно заряжать до 4,2 Вольт. Напряжение выше этого разрушает органический электролит. Но несмотря на стойкость к перезаряду после того как аккумулятор наберет полную емкость, его необходимо отключать от источника зарядки. Время нахождения заряженного аккумулятора при пороговом напряжении должно быть минимальным

Чем заряжать LiFePO4

Заряженный до 100% 12-вольтовый LiFePO4 аккумулятор имеет напряжение 13,3-13,4 В, а его свинцово- кислотный аналог в том же состоянии — 12,6 -12,8 Вольт. Напряжение разряженного на 80% литий-железо-фосфатного аккумулятора около 13 Вольт, а свинцово-кислотного 11,8 Вольт. При изменении заряженности на 80% напряжение LiFePO4 аккумулятора меняется всего 0,5 В

Зарядные устройства для LiFePO4 и для свинцово-кислотных аккумуляторов работают по одинаковому принципу. Различия в более высоком напряжении на один элемент, отсутствии стадии кондиционирования, а у некоторых моделей и поддерживающей зарядки.

Зарядные кислотных АКБ

Для свинцово-кислотных аккумуляторов общепринятой в настоящее время является зарядка, состоящая из трех – пяти стадий. Переход от одной стадии к другой происходит автоматически по мере заряда аккумулятора.

Так изменяются ток и напряжения во время зарядки свинцово-кислотных аккумуляторов. Дозарядка выполняется каждые 7 дней. Если из-за нагрузки напряжение падает до 12,5 Вольт, цикл зарядки возобновляется. Обе функции не подходят для LiFePO4 аккумуляторов

На первом этапе зарядное устройство устанавливает максимально возможный ток. Напряжение аккумулятора начинает постепенно расти, и чтобы сохранить ток постоянным, зарядное повышает выходное напряжение. Так продолжается до тех пор, пока напряжение не достигнет определенного порогового значения. Как только это произойдет зарядка постоянным током прекращается и устройство переходит ко второй стадии, которая называется абсорбцией или поглощением

Дальнейшая зарядка идет уже при фиксированном напряжении и постоянно снижающемся токе. Когда ток, потребляемый аккумулятором, опустится примерно до 10% от номинала устройства, вторая стадия завершается. Устройство переходит к этапу кондиционирования, а затем к заключительной стадии — поддерживающей зарядке. Задача последнего этапа — не допускать саморазряда аккумулятора, сульфатации и потери емкости.

Максимальная продолжительность стадии абсорбции зависит от типа свинцово-кислотного аккумулятора. У жидко-кислотных она составляет до 480 минут, а у гелевых доходит до 600 минут. Если в течении этого времени этап поглощения не завершился, срабатывает таймер и устройство переходит к поддерживающей зарядке автоматически. Так происходит, если зарядное недостаточно мощное для данной аккумуляторной батареи, в системе существует нагрузка, не позволяющая устройству снизить ток или аккумулятор поврежден и его пластины замкнуты. Для каждого конкретного аккумулятора длительность абсорбции вычисляется в зависимости от первого этапа зарядки. Когда аккумулятор сильно разряжен первый этап (зарядка постоянным током) идет долго, поэтому длинной будет и стадия абсорбции

Описанные этапы образуют «алгоритм зарядки», который имеет свои уникальные параметры для каждого типа аккумуляторов. Напряжение окончания первого этапа, напряжение абсорбции, продолжительность этапа абсорбции и поддерживающее напряжение для гелевых, AGM и жидко-кислотных аккумуляторов различные. Напряжение абсорбции изменяется от 14,0 до 15,1 Вольт, а поддерживающее напряжение от 13,2 до 13,8 Вольт.

Особенности зарядных для LiFePO4

Зарядные устройства для LiFePO4 аккумуляторов используют алгоритм постоянный ток / постоянное напряжение (CC / CV). Он обеспечивает быструю зарядку без риска перезаряда и напоминает процесс заряда свинцово-кислотных аккумуляторов. Однако есть и отличия

Напряжение железо-фосфатного аккумулятора круто растет в самом конце цикла зарядки. В этот же момент ток, потребляемый аккумулятором резко падает и зарядное устройство должно снизить или отключить напряжение

Зарядные для свинцово-кислотных аккумуляторных батарей имеют режим десульфатации электролита. Литиевые аккумуляторы выравнивания не требуют. Выравнивающее напряжения свыше 15 В + приведет к срабатыванию защиты или повредит железо-фосфатные элементы

Другая, часто встречающаяся функция — это дозарядка. Напряжение заряженного свинцово-кислотного аккумулятора около 12,7 В. Поддерживающее напряжение зарядного устройства – от 13,3 до 13,8 Вольт. Поэтому подключенное к аккумулятору зарядное устройство не только предотвращает его саморазряд, но и питает оборудование, имеющееся в электрической системе. Когда нагрузка в цепи возрастает, аккумулятор начинает разряжаться. Если через некоторое время его напряжение снизится и достигнет «уровня дозарядки», зарядное переключится в режим максимального тока и начнет новый цикл.

«Уровень дозарядки» для свинцово-кислотной аккумуляторной батареи 12,5–12,7 В. Но при таком напряжении литий-железо-фосфатный аккумулятор разряжен примерно на 85-95%. Поэтому для аккумуляторов этого типа «уровень дозарядки» должен быть выше — 13,1-13,2 Вольт.

Эти устройства подходят для зарядки LiFePo4 аккумуляторов от сети 220 В

Источник

Adblock
detector