Меню

Аморфные солнечные панели что это

Аморфные солнечные батареи: изготовление, преимущества, область применения

Дата публикации: 3 мая 2019

Создание первых образцов аморфных пленочных батарей стало новым открытием в сфере альтернативных источников электрической энергии. За несколько лет модель удалось усовершенствовать, добившись от простой конструкции выдающихся технико-эксплуатационных характеристик. Эксперты, занимающиеся исследованиями в области энергетики, утверждают: очень скоро аморфные солнечные панели займут лидирующее положение в своем сегменте и будут запущены в массовое производство.

Технологии производства солнечных панелей из аморфного кремния

Изготовление моделей солнечных панелей осуществляется с использованием тщательно очищенного кремния цилиндрической формы диаметром несколько десятков миллиметров. Заготовку режут на диски толщиной в несколько микрон, после чего подвергают легированию. В обработанной пластине образуются области с разной электрической проводимостью, в зависимости от количества электронов, – р-проводимостью и n-проводимостью. Соединение нескольких дисков в различных вариантах позволяет получить пластину, вырабатывающую электрическую энергию под воздействием света. В качестве основы для пластины кремния могут выступать:

  • специальные виды керамики;
  • стекло особой очистки;
  • кристаллы сапфиров и другие материалы, обладающие светопропускной способностью.

Благодаря безотходному характеру производства, готовые панели имеют относительно невысокую стоимость, что немало способствует их популярности.

Этапы совершенствования аморфных солнечных батарей из кремния

Быстрое развитие и постоянное усовершенствование технологии производства панелей позволило предложить на выбор сразу несколько поколений устройств:

  • первое поколение – так называемые однопереходные конструкции с относительно низким КПД до 5% и непродолжительным сроком службы;
  • второе поколение – доработанные модели с КПД до 8% и увеличенным сроком эксплуатации, идеальное сочетание качества и стоимости;
  • третье поколение – эффективные батареи с КПД до 12%, которые планируется запустить в массовое производство.

Не уступая своим прямым конкурентам – кристаллическим батареям – по уровню мощности, аморфные солнечные батареи значительно опережают их по доступности цене.

Плюсы и минусы аморфных солнечных панелей

В числе основных достоинств конструкций из кремния стоит отметить:

  • незначительную потерю мощности в условиях стабильного повышения температуры. В отличие от кристаллических моделей, теряющих до 20% первоначальной мощности, аморфные солнечные батареи сохраняют эффективность на всем протяжении солнечного сезона года;
  • возможность эксплуатации в условиях рассеянного освещения, благодаря которому объем вырабатываемой электроэнергии увеличивается на 20%. В свою очередь кристаллические панели в условиях рассеянного освещения практически бесполезны;
  • вопрос стоимости. Цена ватта мощности кремниевых батарей ниже, чем этот же показатель у кристаллических моделей. Удешевлению альтернативной энергии дополнительно способствует усовершенствование производственного процесса и применение инновационных технологических решений;
  • незначительный процент дефектов в готовом изделии за счет простой конструкции без сложных соединений элементов;
  • незначительную потерю мощности в условиях пасмурной погоды, когда кристаллические модели теряют до 25% в условиях недостаточного освещения или загрязнения поверхности.

Единственное, в чем проигрывают аморфные солнечные панели, – это пониженный КПД, в 2 раза отличающийся от уровня КПД кристаллических батарей. Однако этот недостаток полностью компенсируется перечисленными преимуществами.

Читайте также:  Часы с солнечной панелью

Рекомендации по применению солнечных батарей из аморфного кремния

Благодаря преимуществам устройства можно без ограничений эксплуатировать:

  • при повышенной облачности;
  • жаркой погоде с повышением температуры воздуха до 55°С и выше;
  • минимальных ограничениях по весу и размеру источника энергии;
  • необходимости встроить батарею в стену или оконные проемы, установить непосредственно на фасад здания.

Использование в качестве основы под кремниевые пластины гибких материалов с хорошей светопропускной способностью позволяет использовать батареи в пошиве дизайнерских моделей одежды и аксессуаров. Кроме того, им находят полезное применение в бытовых условиях, для которых актуально получение недорогой электроэнергии. Возможно, дальнейшее совершенствование производства дополнительно расширит сферу применения кремниевых батарей и дополнительно снизит их себестоимость.

  • Отопление дома – просим помощи у Солнца
  • Студенческая разработка повышает эффективность солнечных батарей на 20%
  • Возможности солнечной энергии
  • Какой контроллер выбрать для солнечных батарей

Вам нужно войти, чтобы оставить комментарий.

Источник

Аморфные солнечные батареи

Внешне панель из аморфного кремния выглядит блекло-сероватой.

Производство элементов из аморфного кремния является безотходным, что существенно уменьшает их стоимость. Несмотря на низкий КПД, элементы из аморфного кремния способны более эффективно использовать рассеянный солнечный свет, а при нагреве элементов выход электроэнергии больше, чем у кристаллических в аналогичных условиях.

Исходным материалом для производства кремниевых аморфных фотоэлементов является силан (SiH4), так называемый кремневодород, который наносится на материал подложки. Слой нанесенного кремния в 100 раз тоньше кристаллического кремниевого фотоэлемента.

В сравнении с кристаллическими кремниевыми элементами аморфные обладают рядом преимуществ, одним из которых является возможность и сравнительная простота создания элементов большой площади (более 1 м) при более низких температурах осаждения, а также наличие специфических полупроводниковых свойств, которыми можно управлять для получения требуемых характеристик, подбирая оптимальные комбинации компонентов пленки.

Аморфный кремний является гидрогенизированной формой кремния (a-Si:H), поскольку в его составе содержится водород в количестве от 5 до 20 ат. %, который изменяет электрофизические свойства аморфного кремния и придает пленке полупроводниковые свойства.

Элементы на основе пленки а-Si:H толщиной менее 1 мкм, полученной в результате разложения силана в тлеющем разряде, могут быть созданы на подложках не только из металла, но и из самых различных материалов: стекла, полимеров , керамики и т. д., поскольку температура осаждения кремния 250-400 градусов С. Однако, наиболее распространенной по-прежнему остается подложка из нержавеющей стали. Основными направлениями разработок в области аморфных гидрогенизированных элементов (a-Si:H) является повышение КПД и стабильности параметров элементов. Наиболее высокая эффективность (13%) в настоящее время получена на элементе с тройным переходом p-i-n.

Оптическое поглощение аморфного кремния в 20 раз превышает аналогичный показатель у кристаллического кремния, что позволяет использовать пленки аморфного кремния толщиной всего 0,5-1,0 мкм, вместо более дорогих пластин из кристаллического кремния толщиной 300 мкм.

Читайте также:  Реферат солнечные батареи как альтернативный источник энергии

Солнечные элементы из аморфного кремния

Технология, при которой тонкая пленка кремния осаждается на подложку и защищается покрытием, получила название «техники испарительной фазы». Эта технология отличается низкой энерго- и трудоемкостью, а, следовательно, и соответствующей ценой.

Для получения гибких фотоэлементов, используются гибкие подложки, такие как металлические или полимерные ленты.В этом случае осаждение происходит непрерывно при протягивании подложки через реактор. Поскольку данная технология высокоэффективна, то и пленки аморфного кремния, полученные этим способом, имеют более низкую стоимость.

Тонкопленочные элементы, к которым относятся элементы из аморфного кремния, способны вырабатывать электричество при рассеянном излучении, что делает их востребованными в регионах, где пасмурная погода не является редкостью, а также в местах расположения промышленных предприятий, загрязняющих воздух. Несмотря на более низкую себестоимость тонкопленочных панелей, им требуется площадь в 2-2,5 раза большая, чем для моно- или мультикристаллических панелей, из-за низкого КПД.

Чаще всего тонкопленочные панели применяют для систем, вырабатывающих энергию прямо в сеть, т. к. наибольшая эффективность у тонкопленочных панелей при их использовании в мощных системах (выше 10 кВт). Для выработки электроэнергии маломощными автономными или резервными системами энергоснабжения более применимы моно- или мультикристаллические панели.

Источник

Аморфные солнечные батареи

В сфере солнечных батарей аморфные солнечные батареи выходят в лидеры. Во всяком случае им прогнозируют такое светлое будущее. Тонкоплёночные фотоэлектрические солнечные модули по сравнению с кристаллическими имеют неоспоримые преимущества. Безусловно сегодня порядка 80% батарей выпускается в кристаллах, однако совсем скоро показатель будет меняться.

В настоящее время развитие пленочных аморфных солнечных батарей происходит ударными темпами, в этой области постоянно делаются все новые шаги для их массового внедрения. Широкое коммерческое будущее получили именно модули из аморфного кремния. В настоящий момент уже существует три поколения солнечных аморфных кремниевых батарей:

1. Однопереходные солнечные элементы. Они относятся к первому поколению аморфных кремниевых батарей. КПД таких батарей было крайне небольшое, порядка 5%, также такие батареи могли работать не более 10-ти лет, затем они просто приходили в негодность.

  1. Второе поколение было представлено теми же однопереходными батареями, однако более совершенными. В частности КПД был увеличен практически вдвое, да и срок эксплуатации их тоже увеличился.
  2. Батареи третьего поколения имеют уже серьезный КПД и могут уже конкурировать с кристаллическими. КПД уже составляет 12%. Срок эксплуатации также значительно увеличился и составляет более 15-ти лет.

Производятся и комбинированные солнечные модули, в которых имеются как аморфные элементы, так и кристаллические. Однако стоимость комбинированных батарей значительная, поэтому их использование носит ограниченный характер.

Аморфные солнечные модули второго поколения

Именно тонкопленочные аморфные однопереходные батареи на сегодняшний момент считаются наиболее перспективными в плане внедрения. Преимущества таких батарей очевидны. Прежде всего себестоимость составляющих элементов достаточно приемлемая. Аморфные батареи имеют лучшие по отношению с кристаллическими показатели мощности. Аморфные батареи имеют меньшую стоимость еще и потому, что для их производства требуется значительно меньше кремния, чем для изготовления кристаллических батарей.

Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.

Основные преимущества кристаллических аморфных батарей

Безусловно первым и основным преимуществом тонкопленочных аморфных модулей является их стоимость. Она намного ниже, чем у кристаллических батарей при том КПД, однако существуют и другие преимущества, которые являются решающими при выборе для потребителя. К основным преимуществам можно отнести:

  1. Если температура меняется на повышение, то солнечные аморфные батареи работают намного более эффективно. В яркий солнечный день аморфные батареи производят электрической энергии намного больше, чем кристаллические. При повышении температуры кристаллические батареи становятся значительно менее эффективными. Не секрет и тонкопленочные батареи теряют свою эффективность при нагреве, однако потери здесь существенно ниже. Например, при нагреве эффективность кристаллической батареи снижается на пятую часть.
  1. Безусловный плюс аморфных батарей — это возможность вырабатывать электроэнергию даже при рассеянном освещении. Аморфные батареи продолжают функционировать даже тогда, когда кристаллические батареи просто становятся неэффективными. Даже при слабом освещении аморфные кремниевые элементы могут генерировать электроэнергию.
  2. Стоимость выработанной электроэнергии у аморфного кремния ниже.
Читайте также:  Прожектор от солнечных батарей для дачи

Аморфные солнечные батареи сегодня развиваются максимально возможными темпами, инвесторы охотно вкладывают в эту энергетическую сферу все больше средств. Объемы производства значительно увеличиваются, а значит уменьшается стоимость конечной продукции. Также растет качество товара и его энергоэффективность.

В процессе производства аморфных панелей не является достаточно сложным технологическим процессом, вот почему отходов в процессе производства меньше. Кристаллические батареи между собой спаиваются, тогда как тонкопленочные модули производятся как готовые конструкции, причем формат их может быть самым разным.

Даже при рассеянном свете, то есть в пасмурную погоду потери по мощности у аморфных батарей существенно меньше. Кремниевые батареи, находящиеся в тени или загрязненные, теряют до четверти мощности. В пасмурную погоду эффективность аморфных батарей намного выше.

В чем недостатки тонкопленочных аморфных солнечных батарей

КПД у аморфных батарей все же в два раза ниже. Это является основным минусом в сравнении с кристаллическими модулями. Однако плюсов у аморфных батарей несравненно больше и недостаток КПД перекрывается с лихвой.

Тонкостенные аморфные солнечные модули: конструктивные особенности

В качестве подложки используется либо различные гибкие материалы, либо стекло. Подложка должна пропускать солнечные лучи. Использование в качестве основы гибких материалов позволяет аморфные батареи размещать на одежде или сумках, в условиях жаркого климата, на фасадах зданий. Батарея достаточно эффективна в облачную погоду. Время эксплуатации аморфных батарей такое же как и кристаллических. Однако технология производства совершенствуется. В общем выбирать безусловно потребителю.

Источник