- Количество циклов заряда у разного рода аккумуляторов
- Литий-ионные аккумуляторы и количество их циклов заряда
- Литий-полимерные разновидности и количество их циклов заряда
- Никель-металлогидридные аккумуляторы и количество их циклов заряда
- Никель-кадмиевые аккумуляторы и количество их циклов заряда
- Количество циклов заряда у аккумуляторов
- Li-Ion
- В каких устройствах используется
- Количество циклов заряда-разряда
- Как достичь максимального количества циклов
- Li-Pol
- В каких устройствах используется
- Количество циклов заряда-разряда
- Как достичь максимального количества циклов
- В каких устройствах используется
- Количество циклов заряда-разряда
- Как достичь максимального количества циклов
- В каких устройствах используется
- Количество циклов заряда-разряда
- Как достичь максимального количества циклов
- Процесс заряда аккумуляторов различных типов
- Заряд аккумуляторов различных типов
- Свинцово-кислотные АКБ
- Происходящие процессы
- Режимы заряда
- Щелочные аккумуляторные батареи
- Происходящие процессы
- Режимы заряда
- Литиевые
- Происходящие процессы
- Режимы заряда
Количество циклов заряда у разного рода аккумуляторов
В отличие от традиционных гальванических элементов питания, многозарядные аккумуляторные батареи становятся наиболее популярными с каждым днем. Благодаря таким изделиям электроаппаратура работает дольше и качественней.
В зависимости от типа изготовления аккумуляторов меняется и количество циклов заряда батарейки. Об этом и о многом другом вы узнаете из статьи, приведенной ниже.
Литий-ионные аккумуляторы и количество их циклов заряда
Таким моделям присущи стандартные габариты изделий. Они являются распространенными среди покупателей и находят свое приспособление в различных видах приборов в быту, а также гаджетах.
Фототехника, ноутбуки, андроидные телефоны, смартфоны, детские игрушки, электромобили, электро самокаты и велосипеды находят свое применение в данных АКБ. Изделиям присуща как оригинальная форма, так и обычная, традиционная.
По количеству циклов заряд/разряд у литиевого типоразмера (18650) составляет примерно 800. Изделия же с высоким качеством имеют цикличность и в тысячу раз, но при этом емкость таких изделий с каждой перезарядкой будет уменьшаться.
Глубокая разрядка таким АКБ категорически запрещена. Она может просто-напросто погубить данный элемент питания. Для того, чтобы Li-Ion-ная батарейка служила как можно дольше, надо использовать ее в работе при t=<-20°С; +50°С>. В условиях, где сила номинального тока завышена, не стоит применять ЗУ для этих АКБ. Аккумулятор может значительно перегреться и перестать функционировать.
Литий-полимерные разновидности и количество их циклов заряда
Данные типы аккумуляторных батарей являются усовершенствованными видами литиевых изделий. Параметры таких элементов питания отличаются не во многом.
Летающие модели детских игрушек, андроидные телефоны и т.п находят свое применение в такого типах батарейках.
Небольшие по массе изделия и с высокой отдачей силы тока, АКБ имеют большое преимуществ — в отличие от традиционных литиевых элементов питания.
По количеству циклов заряд/разряд они составляют величину равную 900 циклам перезаряда. Max кол-во обуславливается качеством АКБ, однако неблагоприятные условия использования могут значительно уменьшить емкость аккумулятора.
Разряжать такие элементы до самого конца категорически не рекомендуется. У них начинает снижаться работоспособность. Поэтому во многих электронных приборах имеется встроенная система-контроллер, которая следит за тем, чтобы аккумуляторная батарейка не разрядилась до самого конца. При определенном разряде индикатор системы оповестит вас о том, что изделие нуждается в подзарядке.
Чтобы литий-полимерный элемент питания не слишком рано растратил свои силы, необходимо использовать его в диапазоне t=<-20°С; +40°С>. Желательно выше +20°С аккумулятор не использовать.
После продолжительного хранения такого типа батареек их необходимо правильно ввести обратно в рабочий строй. Для этого надо произвести несколько циклов заряд/разряд. Это же требуется сделать и в случае. если новое изделие.
Никель-металлогидридные аккумуляторы и количество их циклов заряда
Данному типу моделей батарей присуще немалое количество цикличности заряд/разряд.
Техника с электроприводом, космическая промышленность, бесперебойные источники питания, радиоаппаратура находят свое применение в аккумуляторных батареях такого типа.
Максимальную популярность имеют «КРОНА», «пальчиковые АА», «мизинчиковые ААА» изделия.
В основном, около пятисот циклов заряд/разряд имеют в своей жизни никель-металлогидридные аккумуляторы.
Множество фирм-производителей указывают на упаковке аккумуляторных батареек цикличность в 1000 раз. Однако на деле все намного меньше и не соответствует действительности.
Чтобы Ni-Mh-ные элементы питания функционировали как можно дольше, их необходимо время от времени тренировать. Для этого хотя бы раз в месяц полностью обнуляйте изделие, а затем ставьте его на стопроцентную зарядку.
Никель-кадмиевые аккумуляторы и количество их циклов заряда
Данные типы батареек уже давно вышли из моды использования, однако благодаря своей доступной цене используются по сей день.
Форма этих элементов питания схожа с «пальчиковыми» батареями. Многие электрические инструменты используют их в составе источника питания, регулирующего с помощью схемы-контроллер приход электротока. Шуруповерты и другие приборы мини-инструменты применяют данную схему.
Ni-Cd-вый аккумулятор имеет цикл заряд/разряд от ста до девятисот раз. Срок службы такой (ежедневно используемой) батарейки составляет около года. Многое зависит еще и от правил использования аккумуляторной батареи.
Выход никель-кадмиевого аккумулятора из рабочего строя зависит еще от «эффекта памяти» батареи, поэтому перед подключением батарейки к ЗУ надо проверить уровень ее заряда.
Если он не полностью израсходован, то в следующий раз заряжайте при данном значении емкости.
При зарядке не оригинальным ЗУ надо воспользоваться мультиметром, чтобы точно узнать уровень тока батареи, а также ее напряжение. Любое отклонение от данных параметров приведет в скором времени аккумулятор к выходу из эксплуатационного строя.
Источник
Количество циклов заряда у аккумуляторов
Наличие возможности многократной зарядки делает различного рода аккумуляторы более привлекательными в плане улучшения эксплуатационных свойств электроаппаратуры, в сравнении с обычными гальваническими элементами.
Количество таких периодов у батарей, изготовленных по различным технологиям, существенно отличается. В этой статье будет рассказано о том, сколько раз можно зарядить литиевые, кадмиевые и металлогидридные аккумуляторы.
Li-Ion
Литий-ионные батареи являются одними из самых распространённых перезаряжаемых элементов питания. Такие изделия используются в различных бытовых устройствах и гаджетах, а также могут выпускаться в форме батарей стандартных типоразмеров.
В каких устройствах используется
Li-Ion аккумуляторы можно обнаружить в следующих устройствах:
- Ноутбуки.
- Фотоаппараты.
- Электромобили.
- Детские игрушки.
- Macbook Air и Pro.
- Телефоны Android.
- Смартфоны Iphone.
- Электрические велосипеды и самокаты.
- Такие изделия имеют оригинальную форму либо могут быть выпущены в виде обычных батареек.
Количество циклов заряда-разряда
Стандартное количество циклов заряда аккумуляторной батарейки, изготовленной по литиевой технологии, например элемента 18650, составляет около восьмисот.
Высококачественные изделия способны перезаряжаться более 1000 раз, но в конце эксплуатационного периода может наблюдаться заметное снижение ёмкости.
Как достичь максимального количества циклов
Чтобы не «убить» батарею полностью запрещается глубокий разряд элемента питания этого типа. Для максимального продления жизни такой батарейки, её необходимо эксплуатировать в надлежащих температурных условиях (от -20 до +50˚С).
Использование зарядных устройств, в которых превышен номинальный ток также недопустимо. В этом случае батарея сильно перегревается и начинает деградировать.
Li-Pol
Литий-полимерные АКБ являются усовершенствованными литиевыми батареями, поэтому отличий между этими двумя типами элементов не так много.
В каких устройствах используется
Li-Pol аккумуляторы могут использоваться в различных телефонах с операционной системой Android, а также в других устройствах связи. Подходит такой элемент питания для радиоуправляемых игрушек, особенно для летающих моделей.
В этом случае низкий вес и способность отдавать высокий ток являются неоспоримыми преимуществами использования АКБ этого типа.
Количество циклов заряда-разряда
Как правило, литий-полимерные аккумуляторы способны выдержать до 900 циклов перезарядки. Конечно, максимальное количество зависит от качества батареи, но негативные эксплуатационные условия способны существенно снизить ресурс элемента питания.
Как достичь максимального количества циклов
Глубокий разряд однозначно приведёт к выходу элемента питания из строя, поэтому в различных гаджетах батареи оснащаются специальным контроллером, который прекращает подачу тока на контакты при определённом уровне разряда.
Значительный износ литий-полимерных изделий возможен и при неподходящей температуре хранения или эксплуатации (оптимальное значение этого параметра составляет +20, но эксплуатация возможна от -20 до +40 градусов Цельсия). Батарею необходимо также правильно расконсервировать. Для этой цели новое изделие подвергается нескольким циклам заряд-разряда.
Никель-металлогидридные батареи также выдерживают большое количество циклов заряда-разряда.
В каких устройствах используется
Ni-Mh аккумуляторы могут успешно применяться в следующих областях:
- Космическая промышленность.
- Радиоаппаратура.
- Источники бесперебойного питания.
- Техника с электрическим приводом.
Большое распространение Ni-Mh аккумуляторы получили в типоразмерах (АА, ААА, Крона и т. д.)
Количество циклов заряда-разряда
Реальная периодичность заряда-разряда за весь срок службы составляет не менее пятисот. Многие производители указывают продолжительность работы до 1000 циклов, но на практике этот показатель не всегда соответствует действительности.
Добиться хороших результатов можно, если тщательно придерживаться основных правил хранения и эксплуатации таких изделий.
Как достичь максимального количества циклов
Чтобы добиться максимальной продолжительности работы никель-металлогидридных аккумуляторов, необходимо периодически выполнять процедуру тренировки источника тока.
Для этой цели достаточно не реже одного раза в месяц полностью разрядить АКБ и затем установить на зарядку до достижения 100% уровня.
Никель-кадмиевые аккумуляторы являются уже устаревшими изделиями, но благодаря своей дешевизне по сей день активно используются в различной электротехнике.
В каких устройствах используется
Небольшие источники питания этого типа могут быть выполнены в форме обычных пальчиковых батареек. Также в различных электроинструментах такой аккумулятор может использоваться в составе батареи, регулирование поступление электрического тока в которой, осуществляется платой контроллера.
Наиболее часто такую схему можно встретить в шуруповёртах и других малогабаритных электроинструментах.
Количество циклов заряда-разряда
Никель-кадмиевый аккумулятор рассчитан на 100 – 900 циклов заряда разряда. При ежедневном использовании современных изделий, запаса работоспособности хватает, примерно, на 1 год.
Конечно, от условий эксплуатации также будет зависеть продолжительность работы устройства.
Как достичь максимального количества циклов
Старение никель-кадмиевых батарей происходит, главным образом, из-за эффекта памяти. По этой причине рекомендуется определить уровень заряженности элементов перед подключением ЗУ.
Если эта процедура будет осуществлена до неполного расходования электроэнергии, то следующая разрядка батареи будет осуществлять до этого значения ёмкости.
Если используется неоригинальное зарядное устройство, то рекомендуется с помощью мультиметра проверить уровень тока и напряжения. Отклонение этих параметров также способны привести к преждевременному выходу из строя элемента питания.
Остались вопросы или есть что добавить? Тогда напишите нам об этом в комментариях, это позволит сделает материал более полным и точным.
Источник
Процесс заряда аккумуляторов различных типов
Заряд и разряд аккумулятора являются основными процессами, которые идут при его эксплуатации. Во время заряда аккумуляторная батарея восполняет потерянную ёмкость и по окончании процесса вновь может эксплуатироваться. В этом материале речь пойдёт о заряде аккумуляторов основных типов: свинцово-кислотных, щелочных и литиевых. Будут рассмотрены процессы происходящие при зарядке и режимы.
Заряд аккумуляторов различных типов
Свинцово-кислотные АКБ
Самой распространённой сферой применения свинцово-кислотных аккумуляторов, являются стартерные батареи в транспортных средствах. Они применяются для запуска двигателя, а также поддержки генератора при сильной нагрузке на бортовую сеть автомобиля. В штатном режиме работы свинцово-кислотные АКБ не испытывают глубокого разряда. Заряд батареи после пуска осуществляется током, вырабатываемым генератором. Кроме того, рекомендуется периодически выполнять зарядку стартерного аккумулятора от зарядного устройства. Какие реакции при этом происходят?
Происходящие процессы
В электрохимической реакции внутри свинцово-кислотного аккумулятора участвуют материалы положительного и отрицательного электрода, а также электролит. Активная масса положительного электрода представляет собой диоксид свинца (PbO2). В случае с отрицательным электродом – это порошок свинца (Pb). При заряде свинцово-кислотной аккумуляторной батареи на электродах протекают следующие реакции.
Общий процесс в электрохимической системе описывается уравнением.
В процессе заряда из электролита расходуется вода и постепенно увеличивается его плотность. Плотность электролита полностью заряженного аккумулятора находится около 1,27 гр/см 3 . Ниже можно посмотреть таблицу степени заряженности АКБ.
Плотность электролита, г/см. куб. (+15 гр. Цельсия) | Напряжение, В (в отсутствии нагрузки) | Напряжение, В (с нагрузкой 100 А) | Степень заряда АКБ, % | Температура замерзания электролита, гр. Цельсия |
---|---|---|---|---|
1,11 | 11,7 | 8,4 | 0 | -7 |
1,12 | 11,76 | 8,54 | 6 | -8 |
1,13 | 11,82 | 8,68 | 12,56 | -9 |
1,14 | 11,88 | 8,84 | 19 | -11 |
1,15 | 11,94 | 9 | 25 | -13 |
1,16 | 12 | 9,14 | 31 | -14 |
1,17 | 12,06 | 9,3 | 37,5 | -16 |
1,18 | 12,12 | 9,46 | 44 | -18 |
1,19 | 12,18 | 9,6 | 50 | -24 |
1,2 | 12,24 | 9,74 | 56 | -27 |
1,21 | 12,3 | 9,9 | 62,5 | -32 |
1,22 | 12,36 | 10,06 | 69 | -37 |
1,23 | 12,42 | 10,2 | 75 | -42 |
1,24 | 12,48 | 10,34 | 81 | -46 |
1,25 | 12,54 | 10,5 | 87,5 | -50 |
1,26 | 12,6 | 10,66 | 94 | -55 |
1,27 | 12,66 | 10,8 | 100 | -60 |
Плотность электролита, г/см. куб. (+15 гр. Цельсия) | Напряжение, В (в отсутствии нагрузки) | Напряжение, В (с нагрузкой 100 А) | Степень заряда АКБ, % | Температура замерзания электролита, гр. Цельсия |
Основной проблемой в процессе заряда свинцово-кислотного аккумулятора является неполное растворение сульфата свинца (PbSO4). Это вещество забивает поры активной массы, в результате чего снижается площадь взаимодействия электролита с материалом электрода. Из-за этого происходит постепенная потеря ёмкости.
По мере эксплуатации аккумуляторной батареи сульфата свинца на пластинах после заряда остаётся всё больше. Процесс носит название сульфатации. Он является причиной выхода из строя большинства свинцово-кислотных аккумуляторов на транспортных средствах.
Режимы заряда
Если не считать ускоренной зарядки, то есть две основные схемы заряда свинцово-кислотных аккумуляторных батарей. При постоянном напряжении и постоянном токе. Сегодня в продаже можно найти много зарядных устройств (ЗУ), имеющих возможность использования этих режимов, а также их комбинаций.
Наиболее распространённой является схема заряда при постоянном напряжении. Смысл здесь в том, что на терминалы аккумулятора подаётся постоянное напряжение. Заряд обеспечивается благодаря выравниванию напряжений на выводах ЗУ. Полнота заряда в этом случае зависит от напряжения, подаваемого на только выводы АКБ. То есть если заряжать аккумуляторную батарею одинаковое время напряжением 14,4, 15 и 16 вольт, то наиболее полный заряд достигается при 16 В.
Другой распространённой схемой является заряд постоянным током. Этот процесс включает в себя несколько этапов, на каждом из которых поддерживается постоянная сила тока.
Такая схема зарядки требует постоянного контроля и корректировки подаваемого тока. Этапы разделяются по уровню напряжения на выводах аккумулятора.
Обычно процесс выглядит следующим образом.
- На первом этапе сила тока устанавливается в размере 10% от номинальной ёмкости АКБ. После этого проводится зарядка до постоянного напряжения 14,4 вольта.
- Второй этап начинается с напряжения 14,4 вольта. Это значение является тем уровнем, на котором начинается разложение воды из электролита на кислород и водород. У аккумуляторов, выпускаемых по технологии Ca-Ca, это значение напряжения выше. Чтобы минимизировать выделение газов, сила тока снижается в два раза. То есть если на первом этапе она была 5 ампер, то здесь нужно уменьшить до 2,5 А.
- Третий этап стартует с напряжения 15 вольт. Сила тока уменьшается два раза по сравнению со вторым этапом. Далее через определённые промежутки времени (1─2 часа) проверяется напряжение на терминалах. Как только оно перестаёт меняться, так можно считать процесс оконченным. На последнем этапе будет идти активное выделение газов. По этой причине аккумуляторная батарея должна находиться в хорошо проветриваемом помещении, а рядом не должно быть искр и открытого пламени.
Выше был упомянут метод ускоренной зарядки аккумуляторной батареи. Подобный режим есть во многих зарядных устройствах. Он отличается лишь тем, что на аккумулятор подаётся увеличенный до 30% (по сравнению со штатным значением 0,1*С) ток. Это используется в тех случаях, когда аккумулятору нужно быстро отдать заряд, который необходим для запуска двигателя. Увеличенная сила тока при зарядке отрицательно сказывается на состоянии электродов и активной массы. Поэтому без необходимости этот режим лучше не использовать.
Щелочные аккумуляторные батареи
Щелочные аккумуляторы используются в качестве тяговых. Их можно встретить в различной складской технике, железнодорожном транспорте, электроинструменте и других сферах применения, где они работают в режиме циклирования.
Происходящие процессы
Наиболее распространёнными электрохимическими системами щелочных аккумуляторов являются никель─кадмиевые и никель─металлогидридные. Рассмотрим процесс заряда на их примере. Оба типа батарей имеют положительный электрод с активной массой из гидроокиси никеля (NiOOH). В ней присутствует графит и окись бария. Окись бария продлевает срок службы АКБ, а графит увеличивает электропроводность активной массы.
Активная масса на отрицательном электроде в никель─кадмиевых аккумуляторах представляет собой смесь порошков кадмия (Cd) и железа (Fe). У никель─металлогидридных аккумуляторов активная масса на минусовом электроде является смесью порошков железа и его окислов. В неё добавляют сернокислый никель (NiSO4) и сернистое железо (FeS).
Ниже представлены реакции, происходящие в щелочном аккумуляторе при заряде.
2Ni(OH)2 + 2KOH + Fe(OH)2 -> 2Ni(OOH) + 2KOH + Fe
2Ni(OH)2 + 2KOH + Cd(OH)2 -> 2Ni(OOH) + 2KOH + Cd
В процессе разряда активная масса на положительном электроде окисляется и 2Ni(OH)2 превращается в гидроокись никеля. Одновременно с этим в активной массе отрицательного электрода происходит восстановление, в результате которого образуется железо и кадмий.
Режимы заряда
Если рассматривать заряд стандартного аккумуляторного элемента Ni-Cd, то рекомендуемый ток составляет 10─20% от номинальной ёмкости. Во время зарядки может доходить до 16 часов. Допустимый диапазон температур для зарядки щелочных аккумуляторов составляет от 0 до 50 по Цельсию. Наиболее эффективно процесс заряда происходит в диапазоне температур от 10 до 40 градусов Цельсия.
На практике конструкция щелочных аккумуляторов позволяет заряжать их током не менее 30% от номинальной ёмкости. Процесс заряда в этом случае занимает несколько часов. При заряде щелочных аккумуляторов есть один важный момент. Особенно это актуально для никель─кадмиевых батарей. Они имеют такую проблему, как «эффект памяти». Поэтому перед зарядом эти АКБ требуется разрядить. Подобным функционалом располагают многие зарядные устройства, предназначенные для работы со щелочными аккумуляторами.
Поэтому процесс зарядки щелочного аккумулятора чаще всего начинается с его разряда. При этом не должно допускаться снижение напряжения на выводах элемента ниже 1 вольта. После разряда запускается процесс заряда.
Различных схем заряда для щелочных батарей значительно больше, чем для свинцово-кислотных. Некоторые из них приведены на изображении ниже.
В процессе заряда напряжение на выводах щелочного аккумулятора постепенно увеличивается до 1,6─1,75 вольта. На заключительном этапе напряжение может подниматься до 1,8 вольта. В случае с герметичными щелочными АКБ бывает так, что окончание заряда определяется переданными ампер-часами. Чтобы зарядить батарею целиком иногда расходуется количество энергии, соответствующее 150 процентам от номинальной ёмкости. Напряжение полностью заряженного щелочного аккумулятора в разомкнутой цепи составляет 1,45 вольта.
Вернуться к содержанию
Литиевые
Процесс заряда будет рассмотрен на примере литий─ионных аккумуляторных батарей. В последнее время они получили широкое распространение в качестве источников питания для бытовой техники, потребительской электроники, электроинструмента, электромобилей, электровелосипедов, скутеров и т. п. По сравнению с вышеописанными свинцово-кислотными и щелочными АКБ литий─ионные модели имеют более высокую энергоёмкость.
Происходящие процессы
В литиевый электрохимической системе сейчас используются различные химические соединения и периодически разрабатываются новые. Мы рассмотрим реакции, происходящие при заряде в большинстве распространённых коммерческих Li─Ion батареях.
Отрицательный электрод выполняется из материала, содержащего углерод. Благодаря его природе и составу электролита происходит процесс интеркаляции ионов лития в углерод. Углеродная матрица обладает слоистой структурой, которая может быть упорядоченной или частично упорядоченной. Это уже зависит от конкретного углеродосодержащего материала.
Материалы, используемые для производства положительного электрода, могут отличаться для различных разновидностей литиевых батарей. Чаще всего для этих целей используются литированные оксиды кобальта или никеля. Используются также литий─марганцевые шпинели.
При заряде литий─ионного аккумулятора на электродах протекают следующие реакции.
C + xLi + + xe — -> CLix
В процессе интеркаляция ионы лития из электролита внедряются между слоями углерода. При этом объём углеродной матрицы меняется незначительно. Этими качествами был обусловлен выбор углерода в качестве материала анода. Помимо материала, содержащего углерод, в отрицательном электроде могут быть такие добавки, как олово, серебро и их сплавы. В некоторых моделях встречаются композитные материалы.
Режимы заряда
Процесс заряда литий─ионных аккумуляторов комбинированный и проходит в два этапа. На первой стадии ведётся зарядка током, величина которого составляет от 20 до 100% от номинальной емкости батареи. Этот этап продолжается до того, пока напряжение АКБ не достигнет 4,1 вольта. После этого начинается второй этап, во время которого заряд ведётся при постоянном напряжении. По времени вся зарядка продолжается около 3 часов (при максимально допустимом токе), из которых на первый этап отводится один час. Более подробно о процессе заряда литиевых аккумуляторов можно прочитать в этой статье.
Окончание заряда фиксируется в тот момент, когда напряжение достигло максимального (4,1─4,2 В), а ток уменьшился до 3% от своей величины в начале процесса. В некоторых случаях возможен третий этап, который представляет собой хранение. Этот этап представляет собой периодическую подзарядку для компенсации ёмкости, потерянной в результате саморазряда.
Если увеличивать ток заряда выше 0,2─1*С, это не приводит к уменьшению времени процесса. В этом случае просто сокращается первый и увеличивается второй этап.
Бывают зарядные устройства, которые обеспечивают только первый этап зарядки. При таком варианте степень заряженности батареи составляет около 70─80%.
Вернуться к содержанию
Источник