Меню

Где были изобретены солнечные батареи

Кто обуздал энергию солнца и придумал солнечные батареи

Отцом солнечных батарей является Александр Эдмонд Беккерель. Именно он открыл базовый принцип – фотогальванический эффект. Этот термин означает трансформацию энергии Солнца в электричество. Но стоит помнить и о величайшем физике Архимеде, которого можно назвать прапрадедушкой открытия.

Кому мир обязан полезным изобретением

Архимед первым по-настоящему осознал и научился использовать энергию солнца. С помощью системы зеркал он сжег целую флотилию вражеских кораблей, которые осаждали его город Сиракузы.

Французский ученый А. Э. Беккерель в 1839 г. открыл фотоэффект, благодаря экспериментам с электродами и электролитом.

В 1873 Уиллоуби Смит обнаружил чувствительность селена к свету. И открыл фотоэлектрический эффект с КПД 1%. Это значило, что лишь один процент солнечного света был преобразован в электричество.

Свой вклад внес и великий ученый Альберт Эйнштейн. За теорию фотоэффекта он был награжден Нобелевской премией в 1921 году.

Следующим этапом прогресса стало открытие ученых из Америки в 1954 г. Три компании Bell Laboratories Дэрил Чапин, Г.Пирсон и К.С.Фуллер заявили о создании первой солнечной батареи на основе кремния. Они добились КПД 4%, а немного позже довели до 6%.

Эволюция солнечных батарей

Как раз в то время велись активные космические исследования. И всего спустя 4 года солнечные панели впервые начали использовать в космических спутниках. 17 марта 1958 в США был запущен первый спутник на базе солнечных аккумуляторов «Авангард-1», а немного позже 15 мая в СССР – «Спутник-3».

Приборы продолжали совершенствовать. В 70-х удалось добиться КПД в 10%. Но они все еще не годились для использования на Земле из-за сложностей в производстве и дороговизны (цена 1 кг кремния была около $100).

Мир уже осознавал огромный потенциал солнечных АКБ и активные исследования продолжались. Так, в 1985 году КПД кремниевой батареи стал 20-22%.

Стабильное и успешное массовое производство солнечных аккумуляторов удалось наладить только в конце 80-х. И спустя около 10 лет группа ученых из США добилась существенного увеличения эффективности батарей. Был создан особый тип, который характеризовался простотой в производстве, небольшой себестоимостью материалов и экономностью.

Именно в 1989 году мир увидел солнечную батарею на тандемных фотоэлектрических преобразователях, КПД которых было более 30%.

Первая в своем роде масштабная промышленная электростанция была возведена в 1985 г. при СССР в Крыму. Это была, СЭС-5 с пиковой мощностью 5МВт. Для понимания, 5 МВт мощности имел первый ядерный реактор. К сожалению, из-за высокой цены вырабатываемого электричества в середине 90-х ее закрыли.

Конец 1989 года ознаменовался в США открытием 80 МВт солнечной станции от Loose Industries. И в течении следующих 5 лет эта же компания запустила еще несколько подобных СЭС суммарной мощностью на 480 МВт.

Масштабные правительственные программы

  • 1990 год – Германия запускает программу «1000 Солнечных крыш».
  • 1994 год – Япония активно внедряет кампанию «70000 Солнечных крыш».
  • Компания Spectrolab в 2009 году демонстрирует фотоэлемент со способностью преобразовывать энергию Солнца в электричество на 41,6%.
  • В 2011 году компания из Калифорнии Solar Junction сумела достичь КПД 43,5%.
  • Корпорация Sharp в 2013 году создает фотоэлемент, состоящий из 3-х слоев, на сложной химической базе с 44,4% КПД. А в 2014 Институте им. Фраунгофера создали солнечные батареи с КПД 46%.
  • В 2014 году введена в эксплуатацию самая большая на Земле электрическая станция от Солнца – Ivanpah Solar Electric Generating System. Ее площадь 14,24 кв. км, а мощность – 392 МВт. Этого хватит что бы обеспечить больше 140.000 объектов в Калифорнии.

Интересно, что одним из трех совладельцев этой электростанции является компания Google.

Применение в быту и науке

Солнечные батареи используют:

  • В электронике. Мобильные телефоны, плееры, фонарики, зарядные устройства PowerBank, калькуляторы, ноутбуки.
  • Машиностроение. Электромобили со встроенными аккумуляторами от Солнца на крышах.
  • Авиация. Одна из разработок, проект из Швейцарии по созданию самолета, работающего исключительно на энергии солнца – Solar Impulse.
Читайте также:  Лучший контроллер заряда для солнечных батарей

  • Обеспечение зданий. В этом случае панели устанавливаются на крышах заводов или жилых домов. Преимущественно в Южной части США, Саудовской Аравии, Израиле, Испании, Индии и прочих.
  • В медицине. Ученные из Южной Кореи изобрели подкожную батарею. Супермаленькую батарею могут вживлять под кожу для постоянной работы разных приборов в теле человека. Эта батарея в 15 тоньше волоса человека и площадью около 0,07 кв. см.

Человечество постепенно переходит на использование экологически чистой энергии. И сегодня уже есть проекты в разработке по строительству электростанций, работающих от Солнца, за пределами земной атмосферы.

Источник

Как работают солнечные батареи

Cолнце есть и будет всегда! Возможно, это слишком смелое заявление, но это действительно так. По крайней мере, с точки зрения человечества. Пусть оно и взорвется через сколько-то там миллионов лет, но к тому времени мы уже покинем эту планету или сами, или в виде кучки пепла, которую развеет в космосе очередной огромный камень, налетевший на наш голубой шарик. Именно из-за такой стабильности Солнца его можно и нужно использовать для получения энергии. Люди уже давно научились это делать и сейчас продолжают совершенствовать технологии солнечной энергетики. Но как же работают солнечные панели, батареи и вообще, как можно превратить свет в электричество внутри розетки?

Солнечные панели позволяют сделать электричество чуть ли не бесплатным.

Когда появились солнечные батареи

Солнечные батареи были изобретены достаточно давно. Впервые эффект преобразования света в электричество был обнаружен Александром Эдмоном Беккерелем в 1842 году. Для создания первых прототипов потребовалось почти сто лет.

В 1948 году, а именно 25 марта, итальянский фотохимик Джакомо Луиджи Чемичан смог сделать то, что мы теперь используем и развиваем. Спустя 10 лет в 1958 году технология впервые была опробована в космосе в качестве элемента питания американского спутника, названного ”Авангард-1”. Спутник был запущен 17 марта, а уже 15 мая того же года это достижение повторили в СССР (аппарат ”Спутник-3”). То есть технологи начала массово применяться в разных странах почти одновременно.

Использование солнечных панелей в космосе — обычная практика.

Подобные конструкции применяются в космосе до сих пор, как важный источник энергии. А еще их используют на Земле для обеспечения энергией домов и даже целых городов. А еще их начали встраивать в гражданские электромобили для обеспечения большей автономности.

Вообще, важность подобных элементов невозможно переоценить. Только так можно добиться получения энергии в любой точке планеты. Гидроэнергетика, атомные станции, ветряки и тому подобные системы могут быть размещены только в определенных местах, стоят очень дорого или требуют соответствующей инфраструктуры. И только солнечные панели позволяют построить дом в пустыне и электрифицировать его. За относительно небольшие деньги. На «ветряк» их точно не хватит.

Как работают солнечные панели

Стоит немного уточнить, что понятие ”солнечная батарея” не очень правильное. Точнее правильное, но не имеющее отношение к тем системам питания, о которых мы говорим. Батарея там обычная, но получает энергию от солнечных панелей, которые преобразуют в электричество свет солнца.

В основе солнечной панели лежат фотоэлектрические ячейки, которые помещены внутрь общей рамы. Для создания таких ячеек чаще всего используется кремний, но возможно использование и других полупроводников.

Энергия вырабатывается в тот момент, когда на полупроводник попадают солнечные лучи и нагревают его. В результате этого внутри полупроводника высвобождаются электроны. Под действием электрического поля электроны начинают двигаться более упорядоченно, что и приводит к появлению электрического тока.

Примерно так выглядит солнечная панель.

Для того, чтобы получить электричество, надо подключить контакты к обеим сторонам фотоэлемента. В результате этого он начнет питать электричеством подключенный потребитель или просто заряжать батарею, которая потом будет отдавать электричество в сеть, когда это понадобится.

Читайте также:  Солнечные батареи от китайского производителя

Основной упор на кремний делается из-за его кристаллических особенностей. Впрочем, в чистом виде кремний сам по себе является плохим проводником и для изменения свойств к нему делается крайне малое количество примесей, которые улучшают его проводимость. В основном в число примесей входит фосфор.

Как полупроводники вырабатывают электричество?

Полупроводник является материалом, в атомах которого либо есть лишние электроны (n-тип), либо их не хватает (p-тип). То есть полупроводник состоит из двух слоев с разной проводимостью.

В качестве катода в такой схеме используется n-слой. Анодом является p-слой. То есть электроны из первого слоя могут переходить во второй. Переход происходит за счет выбивания электронов фотонами света. Один фотон выбивает один электрон. После этого они, проходя через аккумулятор, попадают обратно в n-слой и все идет по кругу.

Когда энергия выработана, все начинается по кругу, а свет всегда горит.

В современных солнечных панелях в качестве полупроводника используется кремний, а начиналось все с селена. Селен показал крайне низкий КПД — не более одного процента — и ему сразу стали искать замену. Сейчас кремний в целом удовлетворяет требования промышленности, но есть у него и один существенный минус.

Обработка и очистка кремния для приведения его к тому виду, в котором его можно будет использовать, является достаточно затратной процедурой. Чтобы снизить стоимость производства, проводят эксперименты с его альтернативами — медью, индием, галием и кадмием.

Эффективность солнечных панелей

Есть у кремния еще один минус, который не так существенен, как стоимость, но с которым тоже надо бороться. Дело в том, что кремний очень сильно отражает свет и из-за этого элемент вырабатывает меньше электричества.

Даже повесив столько панелей, все равно надо обеспечивать их нормальную работу. В том числе бороться с отражением света.

Для того, чтобы уменьшить такие потери, фотоэлементы покрывают специальным антибликовым покрытием. Кроме такого слоя, надо использовать и защитный слой, который позволит элементу быть более долговечным и противостоять не только дождю и пыли, но даже падающим веткам небольшого размера. При установке на крыше дома это очень актуально.

Солнце -сила! Ее надо использовать!

Несмотря на общую удовлетворенность технологией и постоянную борьбу за улучшение показателей, современным солнечным панелям все равно есть куда стремиться. На данный момент массово производятся панели, которые перерабатывают до 20 процентов попадающего на них света. Но есть и более современные панели, которые пока ”доводятся до ума” — они могут перерабатывать до 40 процентов света.

А вообще, солнечная энергетика это круто! И помните, даже при таком «пАлящем» солнце система будет работать.

Источник

Кто и когда создал первые солнечные батареи?

Точкой отсчета развития гелио энергетики принято считать середину 20 века. Однако вопрос «кто и когда изобрел солнечные батареи» не имеет однозначного ответа. К созданию элементов, способных преобразовывать излучение в электрический ток, приложили руку многие великие ученые прошлого. А современному многообразию сотен разновидностей солнечных панелей мы обязаны командам физиков и инженеров всего мира.

  • 1839: Явление фотогальванического эффекта

Александр Беккерель, изучавший влияние света на электролиты, в 1839 совершенно случайно обнаружил, что под воздействием излучения в растворе возникает электрическое напряжение. Французский физик в третьем поколении не был тем, кто придумал солнечные панели. Но именно этот эффект, впоследствии названный фотовольтаическим, положил начало будущей гелио индустрии.

  • 1873: Обнаружена фотопроводимость селена

Только спустя 44 года британский инженер Уиллоби Смит смог пройти путь от жидкого электролита до твердого селена. Кусочек этого материала стал первой фотоэлектрической ячейкой, которая при поглощении излучения становилась электропроводящей. На протяжении следующих трех лет эксперименты над селеном проводили физики Уилл Адамс и Рич Дэй. В 1876 они окончательно поняли, что солнечная энергия может собираться, преобразовываться и сохранятся. Правда, пока это была только теория.

Александр Беккерель, Александр Столетов, Альберт Эйнштейн

  • 1883: Первый в мире работающий фотоэлемент
Читайте также:  Аккумуляторный блок для солнечных батарей

По-настоящему первым из тех, кто открыл для мира солнечные батареи, стал нью-йоркский изобретатель Чарльз Фритц. Его «настольная» электростанция работала от крохотной позолоченной селеновой пластики, и обладала КПД 1,5%.

  • 1887: Объяснение природы фотоэлектрического эффекта

Далее над удивительным свойством фотонов передавать свою энергию электронам работали многие известные физики. Генриху Герцу даже удалось обнаружить, что максимальной генерации можно добиться не от видимого, а от ультрафиолетового излучения. Но только великий Альберт Эйнштейн сумел объяснить саму природу фотоэлектрического эффекта. За что позднее был справедливо удостоен Нобелевской премии.

  • 1953: Открытие полупроводниковых возможностей кремния

Более полувека после работ Эйнштейна ученым и изобретателям не удавалось повысить эффективность экспериментальных гелио установок. Причиной тому были полупроводниковые ограничения селена и необходимость использовать в элементах золото. Только в 1953 коллективу лаборатории Белла удалось найти другой, более дешевый, практичный и широко распространенный материал. Этим материалом стал кремний, и первая же система на его основе показала КПД 6%.

  • 1956: Старт коммерческого изготовления панелей

Первыми, кто создал солнечные панели современного образца и вывел их на коммерческий рынок, стала компания Western Electric. Несмотря на все еще высокую стоимость оборудования, покупатели находились. Наиболее известная приобретенная солнечная электростанция тех времен – набор гелио панелей, установленных на крыше Белого дома по указанию президента Кеннеди.

  • 1958: Фотоэлектрические элементы в космосе

Отдельную благодарность следует вынести тем, кто придумал и построил солнечные батареи для космических аппаратов. Никаким другим путем стабильно получать электроэнергию для оборудования за пределами земли на тот момент было невозможно. И сейчас не существует ни одного стационарного спутника, космической станции или корабля, которые не использовали бы фотоэлектрические преобразователи.

  • 1971 — 1979: Создание экономически выгодных панелей

Следующий толчок работе над созданием более эффективных гелио панелей принесло резкое повышение цен на нефть в 70-х годах прошлого века. Удивительно, но «спасибо» за финансирование таких разработок следует сказать крупнейшей нефтяной компании мира Exxon Corporation. Именно она оказалась той, кто открыл солнечные батареи нового поколения для потребителей, за счет падения цен за ватт мощности до $30. Вдесятеро дешевле, чем обошлась фотовольтаика для Белого дома всего десятилетием ранее.

  • 1981: Кто создатель первой солнечной электростанции башенного типа?

Следующее десятилетие стало временем появления крупных гелио станций башенного типа. Термодинамическая электростанция Solar Two в пустыне Мохава (США) начала работу в 1981, постепенно увеличивая количество зеркал до 1999 года.

Годом позже тем же концерном Arco Solar был построен калифорнийский солнечный парк, способный генерировать более 1 МВт энергии в час.

В 1983 компания запустила гигантскую ферму из сотни тысяч солнечных батарей общей мощностью 5,2 МВт.

  • 1994: Первые солнечные батареи с КПД 30%

Американская Национальная лаборатория возобновляемой энергии стала той, кто впервые придумал солнечные батареи на редкоземельных элементах вместо кремния. Сейчас они известны как CIGS, или комбинация фосфидов и арсенидов германия, индия и галлия. КПД первых же образцов составил 30%. Современные экспериментальные ячейки приближаются к показателю 45%.

  • 1995: Кто и когда изобрел интегрированные солнечные панели?

Имя этого человека – Томас Фалуджи. Патент на гелио батареи, интегрированные в специальные выдвигающиеся навесы, был подан в 1995. Сегодня интеграцией фотовольтаики в любые конструкции и предметы никого не удивишь. Она присутствует в черепице для домов Илона Маска, автомобильных трейлерах, китайских копеечных фонарях и даже одежде.

  • 2015: Фотоэлектрические пленки, напечатанные на принтере

Первые промышленные образцы были представлены в 2015 году. И сегодня все, кто создает солнечные батареи ближайшего будущего, ориентируются на тонкопленочные технологии. Панели третьего поколения не толще бумаги, печатаются на 3D-принтерах и уже сейчас достигают эффективности более 20%. Они дешевы, экологически безопасны, универсальны, могут быстро изготавливаться целыми рулонами, и со временем могут полностью заменить тяжелые и дорогостоящие кремниевые модули.

Источник