Меню

Гетероструктурные солнечные панели что это

Гетероструктурная технология

Гетероструктурная технология предусматривает формирование солнечных элементов на основе контакта двух типов полупроводников: легированных слоев аморфного кремния с положительными носителями заряда (p) и кристаллического кремния с отрицательными носителями зарядом (n) – так называемый p-n переход – базовый элемент современной электроники. При попадании солнечного света на p-n переход, подключенный к потребителю, через электрическую цепь протекает ток – солнечный элемент вырабатывает электроэнергию.
Ключевыми преимуществами технологии гетероперехода являются: высокий КПД и стабильность параметров, что позволяет обеспечивать высокое качество конечной продукции.
Это достигается за счёт ряда технологических особенностей при производстве, а именно:

  • Напыление легированных слоёв аморфного кремния позволяет повысить эффективность работы при экстремально высоких и низких температурах, а также в условиях низкой освещенности.
  • Пассивация задней поверхности уменьшает рекомбинацию (потери при переходе), что в свою очередь обеспечивает увеличение напряжения холостого хода и снижение температурного коэфициента.
  • Использование антиотражающих покрытий позволяет снизить отражение от поверхности с 30 до 10%.
  • Используется специальное стекло повышенной проницаемости.
  • Металлические контакты на поверхности расположены максимально близко друг к другу для минимизации поперечных резистивных потерь и в то же время очень тонкие, чтобы уменьшить затеняемую площадь поверхности.

Таким образом достигается:

  • до 10%* повышенной выработки на 1 кв. м площади за счёт низкого температурного коэффициента
  • до 13%* более эффективное использование площади и экономия на комплектующих
  • до 21%* прироста совокупной выработки на протяжении всей жизни модуля за счёт низкой деградации

*По сравнению с монокремниевыми модулями аналогичной мощности

ЭТАПЫ ПРОИЗВОДСТВА ГЕТЕРОСТРУКТУРНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ

1. УЧАСТОК ВХОДНОГО КОНТРОЛЯ И СОРТИРОВКИ ИСХОДНЫХ ПЛАСТИН КРЕМНИЯ (WIS)
Исходные пластины кристаллического кремния поступают на участок входного контроля.
Здесь пластины сортируются по типам дефектов, проходят разбраковку. Годные пластины кремния автоматически загружаются в кассеты и подаются на участок химобработки.

2. УЧАСТОК ХИМИЧЕСКОЙ ОБРАБОТКИ И ТЕКСТУРИРОВАНИЯ ПЛАСТИН КРЕМНИЯ
Первой операцией на данном участке является химическая обработка – удаление нарушенного слоя при резке пластин. Следующая задача – создать текстурированную поверхность пластины с целью максимального поглощения падающего света. Формирование пирамидальной светопоглощающей текстуры на поверхности пластины монокристаллического кремния происходит путем селективного анизотропного (медленного) травления. Процесс происходит в специальных ваннах с раствором щелочи при температуре 850 С.

3. ЛИНИЯ ФОРМИРОВАНИЯ ГЕТЕРОПЕРЕХОДНЫХ СТРУКТУР
Далее на подготовленные пластины монокристаллического кремния (на лицевую и тыльную стороны) в установках KAI по технологии плазмохимического осаждения синтезируются (наносятся) тонкие наноразмерные слои (пленки) аморфного гидрогенизированного кремния.
Создание гетеропереходов на обеих сторонах пластины монокристаллического кремния происходит в несколько этапов: линия автоматизации подает кассеты с подготовленными пластинами в установки KAI первого напыления, где наносится аморфный кремний на лицевую часть пластины, после выполнения операции, автоматически, через зону ISO 7 пластины возвращаются на участок автоматизации, переворачиваются и направляются в KAI второго напыления для нанесения пленок на тыльную сторону.

4. УЧАСТОК НАНЕСЕНИЯ КОНТАКТОВ
После создания гетероструктуры ячейки подаются на участок формирования антиотражающего и металлических контактных слоев. Здесь на них наносятся слои ITO – оксида индий олова и другие пленки, после чего пластины приобретают оттенки синего и фиолетового цвета.

5. ЛИНИЯ МЕТАЛЛИЗАЦИИ
Далее на пластины методом трафаретной печати наносится токосъемная сетка, что обеспечивает эффективный сбор и передачу генерируемой солнечной ячейкой электрической энергии.
Токосъемная сетка формируется путем продавливания серебросодержащей пасты через сетчатый трафарет и последующего процесса термообработки (впекания) при температуре около 2000С.

6. УЧАСТОК ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК И СОРТИРОВКИ ГОТОВЫХ ФЭП (CIS)
Завершает процесс производства фотоэлектрических преобразователей участок измерения характеристик и сортировки. Здесь замеряются все электрофизические характеристики солнечных ячеек: ток, напряжение, мощность и т.д. и сортируются по параметрам.

Источник

Особенности микроморфных солнечных модулей

Современные тенденции в развитии технологий направлены на сохранение природной среды, экономию ресурсов, безопасность для окружения. В условиях постоянно повышающихся цен на основные энергоносители как никогда остро стоит вопрос о поиске дешевой и эффективной альтернативы. На таких принципах как раз и созданы микроморфные солнечные модули. Энергия солнца – это бесплатный и мощный ресурс, опираясь на который разрабатываются современные энергетические технологии.

Как устроены батареи

Работа солнечных батарей основана на модифицировании энергии прямых солнечных лучей в электрическую. Главной составляющей являются фотоэлементы, которые и выполняют функцию преобразователя.

Для производства фотоэлементов пользуются кремнием. Это вещество находится в земных недрах и его там достаточно большое количество (около 30%). Кремний перерабатывает солнечный свет, позволяя применять его в энергоснабжении.

Гетероструктурные солнечные батареи – это технологии нового поколения. До того как стать такими, они прошли долгий путь и все продолжают совершенствоваться:

  1. Первоначально панели для получения энергии из солнечных лучей изготовляли, применяя кремний в чистом виде. Такие батареи получили название монокристаллических. Чтобы получить чистый химический элемент, требуются большие трудозатраты и материальные вложения. Эти факторы отразились и на стоимости изделий. После плавления жидкого кремния и дальнейшего его отвердения материал разрезали на тонкие листы, которые оборудовали тонкими электродами, расположенными на поверхности в виде сетки. Стоимость такой гелиевой батареи высока, но ее КПД достигает 22%, и поэтому расходы на изготовление окупают себя.
  2. Для поликристаллических батарей используется поликристаллический кремний. Расходы на производство их значительно меньше, но меньше и КПД таких панелей (18%).
  3. Более совершенные панели стали производить с аморфным кремнием, изготавливая тончайшие пленки. В данном случае кристаллический кремний заменили силаном или кремневодородом. Их КПД измеряется 6%, но производство стоит намного дешевле предыдущих вариантов. Также эти батареи очень гибкие и хорошо работают в облачных погодных условиях.
  4. Самая современная технология – это микроморфные разработки на солнечные модули. Толщина применяемого кремния составляет 1 нанометр. Он наделен редкими характеристиками прозрачности для инфракрасного и видимого спектра волн. Этого удалось достичь переменой направлений структурных элементов в кремниевой кристаллической решетке.
Читайте также:  Minecraft завод солнечных панелей

Технологический процесс

Чтобы сделать гетеростуктурный солнечный модуль, используются тонкие пленочные пластины в несколько слоев. Для их получения берут разные полупроводники, у которых имеется разница по широте, там, где находится «запрещенная зона». В результате внутри двух близлежащих слоев возникают переходы. Возникновение гетеропереходов позволяет получать повышенное сосредоточение носителей, нежели это возможно в структурах с одним слоем.

Микроморфный тонкопленочный солнечный модуль состоит из двух слоев полупроводников. В этом и заключается основное отличие от предшествующих моделей, в которых был только аморфный кремний. Благодаря микроморфному кремнию появилась возможность задействовать для преобразования в электричество больший охват световых лучей, что повышает его КПД.

Другими словами, электричество будет вырабатываться солнечными батареями не только в ясную солнечную погоду, но и при рассеянных лучах при облачности неба. Это положительно сказывается на увеличении деятельности панелей. Из приятных моментов стоит отметить их небольшую стоимость и безопасность для окружающей среды. А еще эти солнечные модули являются красивым наружным элементом для отделки строений и при этом служат дополнительным источником энергии.

Выпускаются энергопреобразующие панели компанией Hevel Solar по швейцарским технологиям. При номинальной мощности в 125 Вт батарея выдает напряжение 96,2 В . Температурный режим, при котором она активна, от -40°С до +90°С . Весит модуль около 26 кг.

Как подключать батареи

При установке солнечных батарей своими руками для получения максимальной мощности нужно подготовить провод достаточной длины, чтобы соединить панели с контроллерами.

Соединение панелей друг с другом должно быть последовательным, при этом нужно следить, чтобы они были одной мощности и напряжения. Нельзя допускать скручивания и спаивания проводов, чтобы в данных точках не произошло потерь энергии. При таком виде подключения не применяют соединение панелей, имеющих разное напряжение и мощности.

При параллельном подсоединении нельзя использовать несколько панелей с разными напряжениями, но с разными мощностями разрешается.

Правильно подобранные солнечные батареи, контроллеры, аккумуляторные кислотные батареи (АКБ) для токов панелей, корректно соединенные, даже при небольшом входном напряжении (12 вольт) будут выдавать высокий КПД.

Гетероэлектрик – отечественная инновация

Российские ученые несколько лет назад сделали открытие – гетероэлектрик, который составляет основу «звездной батареи». В ней объединены гетероэлектрический конденсатор с гетероэлектрическим фотоэлементом, работают они в видимых и инфракрасных излучениях. Разница в их работе по сравнению с солнечными модулями в возможности преобразовывать энергию не только при солнечном и рассеянном свете, но и в ночной период.

Гетероэлектрик помогает при управлении магнитным полем, а также при его трансформировании для производства оборудования с различными физическими свойствами.

Источник

Солнечные панели (батареи): виды свойства и принцип действия

Солнечные батареи (солнечные панели) относятся к альтернативным источникам энергии. Они состоят из солнечных элементов, которые преобразуют солнечный ( и не только) свет в электричество. А полный комплект состоящий из солнечных панелей, инверторов, аккумуляторов, контроллеров называется солнечной электростанцией. Может показаться, что у таких устройств нет недостатков, но перед покупкой и установкой следует изучить основные характеристики. Это позволит ответить на вопрос, как подобрать солнечные батареи для дома с учетом Ваших нужд, ведь стоимость одного комплекта достаточно высокая.

Область применения

Сегодня отсутствуют ограничения на использование солнечных батарей. Это обусловлено их преимуществами, в частности, выработкой достаточного количества электроэнергии для энергообеспечения всего объекта или решения локальных проблем (применения в качестве элемента питания и пр.). Освещение – это пока основное направление применения таких модулей. Реже их используют для обогрева, причем в большинстве случаев солнечные батареи обсуживают малогабаритные объекты. Их применяют:

  • в частных и многоквартирных домах;

Применение солнечных батарей в многоквартирных домах

  • коммерческих зданиях;

Использование солнечных панелей на промышленных зданиях

  • теплицах;

Солнечная энергетика в аграрном секторе

  • на придомовой территории.

Крытый навес из солнечных панелей

Условия, при которых предпочтительно устанавливать такие модули:

  • для обогрева/освещения местности, где отсутствуют ЛЭП, в данном случае применение преобразователей солнечной энергии позволит сократить затраты на энергообеспечение объекта, это более выгодный метод, если сравнивать с применением дизельных генераторов;
  • в некоторых многоквартирных домах, построенных за последние годы, использовался альтернативный источник энергии (в системах водоснабжения) или в качестве резервного;
  • в местности (селах, деревнях) время от времени случается отключение электричества, такие модули позволяют обеспечить бесперебойную работу техники.
Читайте также:  Источник питания солнечные батареи схема

Сколько служат солнечные батареи?

Производители часто указывают срок эксплуатации – 20-30 лет (в среднем -25 лет). На протяжении указанного периода устройство может работать без потери мощности, сбоев. Однако это не значит, что по окончании данного срока модули перестанут функционировать. Это заблуждение, т. к. солнечные батареи могут служить намного дольше (до 60 и более лет, как первая из запущенных в эксплуатацию конструкций). Только в данном случае будет постепенно снижаться производительность. Но скорость развития этого процесса низкая. Так, за 10 лет батареи могут потерять не более 10% мощности.

При регулярной эксплуатации, максимальной нагрузке модули быстрее теряют свойства. Чтобы остановить этот процесс, а также увеличить срок службы устройства, рекомендуется придерживаться рекомендаций:

  • обеспечение защиты фотоэлементов: необходимо снизить вероятность механического повреждения, солнечные батареи нужно устанавливать на участках, где риск падения деревьев нулевой, а также уровень воздействия ветровой нагрузки умеренный (что позволит исключить срыв ветром);
  • установка на открытой местности ветрозаградительных конструкций;
  • выполнение обслуживания, своевременная очистка модуля от сора.

В продаже есть также готовые комплекты – устанавливаются преимущественно для энергообеспечения частного жилья. Они состоят из батарей, силовой электроники. Длительность эксплуатации каждого из элементов, узлов разная. Так, батареи могут прослужить 2-15 лет, силовая электроника – до 20 лет.

Виды солнечных панелей

Солнечные батареи функционируют долго, могут вырабатывать постоянный ток, даже если погода пасмурная. Вместе с тем появляется возможность предупредить возникновение скачков напряжения. Как результат, техника на объекте, подключенная к такому источнику электроэнергии, служит дольше, т. к. созданы более щадящие условия эксплуатации (исключается риск повышения, падения напряжения, отключение питания).

Модуль представляет собой панель, состоящую из нескольких преобразователей, объединенных между собой. Чтобы изменить характеристики солнечной батареи, добавляют такие конструкции. Но эффективность работы подобных устройств зависит не только от количества модулей, а еще и от того, насколько правильно была выполнена установка (учитывают углы наклона панелей, интенсивность солнечного освещения на участке). Модули представлены видами:

  • Монокристаллические. Производятся из чистого материала – монокристаллического кремния. Его отличает высокие показатели эффективности. Причем КПД солнечных элементов – около 22%, а панелей на их основе – не более 18%. Такие модули рекомендуется применять в местности, где уровень освещенности часто низкий.

Монокристаллическая солнечная панель

  • Поликристаллические. По стоимости они предпочтительнее, т. к. производятся из мультикристаллических пластин. Еще одна причина низкой цены – недостаточно высокая производительность. Рекомендуется применять такие модули, если в местности сравнительно одинаковый уровень освещенности в разное время, отсутствуют резкие перепады.

Поликристаллические солнечные панели

  • Аморфные. Другое название – тонкопленочные солнечные батареи. Они отличаются универсальным действием (применяются на разных объектах, в различных целях). Могут устанавливаться там, где жаркое солнце внезапно сменяется облачной погодой. Теоретически аморфные панели в будущем будут использоваться не только на крышах, но и на сумках, других бытовых изделиях. Минусом таких панелей является более низкая производительность, если сравнивать с поли-, монокристаллическими.

Тонкопленочные (аморфные) солнечные панели

  • Гетероструктурные. Считаются наиболее эффективными, их КПД достигает 25%. Панели вырабатывают электроэнергию при солнечной и пасмурной погоде. В России такую продукцию представляет марка «Хевел». Компания-производитель разрабатывает и внедряет собственную технологию производства гетероструктурных панелей.

Гетероструктурные солнечные панели

Основные элементы конструкции:

  • аккумулятор, позволяющая устранить перепады напряжения, вызванные изменением освещенности панели, а еще одна накапливает энергию;
  • инвертор – преобразователь тока (из постоянного в переменный);
  • контроллер: обеспечивает стабильную работу модуля, т. к. контролирует все параметры (температуру, зарядное напряжение аккумулятора и др.).

В продаже встречаются готовые системы, а также отдельные элементы для сбора с учетом собственных потребностей.

Как работают солнечные батареи

Солнечный свет попадая на элементы солнечных панелей, преобразуется в постоянный электрический ток. Инвертор преобразовывает постоянный ток в переменный ( в привычные нам 220в), а он, попадая в контроллер, отправляется к потребителям (бытовой технике, осветительных устройств). Аккумулятор же выполняет роль буфера между солнечными батареями и инвертером. Мощность инверторов может быть разной: 250-8000 Вт. Главные параметры, на которые следует обращать внимание: напряжение, мощность. Причем нужно не просто изучить характеристики, а соотнести эти параметры друг с другом. Отмечают наиболее подходящие варианты, исходя из напряжения (В) и мощности (Вт):

  • 12 В, 600 Вт;
  • 24 В, 600-1500 Вт;
  • 48 В, от 1500 Вт и выше.

Существующие разновидности преобразователей:

  1. Автономные. Функционируют без подключения к основной энергосети. При выборе автономных преобразователей учитывают мощность всей подключаемой техники. Дополнительно делают запас, т. к. некоторые устройства при включении создают повышенную нагрузку из-за существенных значений пусковых токов.
  2. Синхронные. Модуль подключен к основной энергосети. Он также оснащен аккумуляторной батареей, имеет свойство накапливать энергию. Излишки «сбрасываются» обратно в сеть. При возникновении перебоев (отмечается недостаток электроэнергии), модуль снова получает требуемое количество от основного источника.
Читайте также:  Дачи с солнечными панелями

Существуют также многофункциональные устройства. Они объединяют возможности первого и второго варианта. Кроме того, различают преобразователи по форме сигнала напряжения:

  • синусоида: модули с таким элементами стоят дороже, т. к. обеспечивают более высокое качество тока, появляется возможность подключить крупногабаритную технику;
  • прямоугольный: недорогие преобразователи, чаще всего используются для обеспечения питания осветительных приборов, многие виды техники несовместимы с источниками напряжения данной формы;
  • псевдосинусоидальный: представители низкой ценовой категории, т. к. качество сигнала ниже, чем в первом случае, они подключаются к любым приборам.

Стоимость комплекта, обзор технических характеристик

Цена устройства формируется с учетом комплектующих:

  • модуль;
  • аккумуляторная батарея;
  • контроллер;
  • инвертор;
  • кабель;
  • клеммы;
  • стеллаж.

Цена солнечных батарей разная. В зависимости от комплектующих стоимость меняется в пределах диапазона: от 300 тыс. руб. до 2 млн руб. Малогабаритные изделия для локального применения можно приобрести и за 10 тыс. руб., однако их допустимо применять для простейших нужд (в качестве элемента питания и др.). При выборе устройства обращают внимание на параметры:

  • энергоэффективность;
  • габариты панелей (могут составить несколько метров по одной стороне);
  • мощность;
  • температурный коэффициент (оказывает влияние на мощность и другие электрические параметры).

Несмотря на высокую стоимость, солнечные батареи приобретают достаточно часто. Это обусловлено сравнительно быстрой их окупаемостью. Срок возврата затраченных средств зависит от количества потребителей. Для сравнения, панели, обслуживающие дом, где проживает семья из 4 человек, окупятся уже через 4 года (средний показатель).

Для удовлетворения простых нужд может быть достаточно панелей «Хевел» сетевой солнечной электростанции мощностью не выше 5 кВт. Их допустимо устанавливать на крыше частного дома, объектах малого и среднего бизнеса (кафе, небольшие магазины, павильоны, гостевые дома). Такой способ позволяет снизить затраты на электроэнергию от основного источника.

Однако самостоятельно сложно понять, какой комплект следует приобрести. Не всегда просто рассчитать и достаточную мощность солнечных батарей. Если выбор пал на панели «Хевел», консультант поможет подобрать модель. От компании приходит специалист, ориентируется на месте: делает замеры, расчеты. Дома останется выполнить пусконаладочные работы. Производитель «Хевел» предоставляет гарантию (до 25 лет) на все комплектующие, а также модули.

Коллекторы: получение тепла из солнечной энергии

Солнечные батареи могут применяться для обогрева объектов, нагрева жидкости. Возможность получения тепла обусловлена способностью батареи накапливать энергию. Это позволяет повышать температуру теплоносителя в трубах, за счет чего обеспечивается не только нагрев жидкости, но и обогрев всего объекта. Солнечные коллекторы функционируют по определенной схеме. Их основные элементы конструкции:

  • насосная станция;
  • бак-аккумулятор;
  • контроллер;
  • трубы и фитинги.
  • плоские: состоят из плоского абсорбера, покрытия, теплоизолирующего слоя;
  • вакуумные (трубчатые): состоят из стеклянной колбы, теплоизоляционный материал заменен на вакуум, который заполняет емкость (в ней также находится абсорбер).

У второго варианта есть существенное преимущество – низкие теплопотери. По этой причине вакуумные коллекторы применяются повсеместно там, где не могут быть установлены плоские аналоги.

Обзор производителей

Лидером продаж является продукция китайских марок. Это обусловлено их доступностью. Для сравнения, цена китайских солнечных батарей в 2 раза ниже, чем немецких со сходными характеристиками. Популярные марки:

  • Suntech Power Ко;
  • Yingli Green Energy;
  • HiminSolar.

Распространены также отечественные панели марок:

  • «Sun Shines» (ООО «Автономные Системы Освещения»);
  • ООО «Хевел»;
  • ОАО «Рязанский завод металлокерамических приборов»;
  • «Телеком-СТВ»;
  • ЗАО «Термотрон-завод» и др.

Как выполнятся монтаж

Выбирают место, где будут фиксироваться панели. Оценивают факторы:

  • тень: следует найти наиболее ярко освещаемый на протяжении всего дня участок;
  • ориентация по сторонам света: если объект расположен на севере, модуль располагают лицевой панелью к югу и, наоборот;
  • угол наклона: он должен соответствовать широте, в которой находится объект (в зависимости от положения относительно экватора осуществляется коррекция 12°).

Крепить панели можно на крыше дома или при помощи специальных ферм. В первом случае достаточно зафиксировать профили. К ним уже крепят модули при помощи болтового соединения. Когда же солнечные батареи монтируются на специальных конструкциях (фермах), этапы работ будут отличаться:

  1. Выполняется сборка профилей, уголков.
  2. Подготавливают болты нужного размера, инструмент.
  3. Фиксируют панели так, чтобы не было люфта между ними и опорной конструкцией.

Подключение электроники предполагает необходимость присоединения батареи посредством проводов. Соединяют контроллер, инвертор согласно схеме. На последнем этапе вся конструкция подключается к потребителю (обслуживаемому объекту).

Итоги: есть ли перспективы развития альтернативного источника энергии

Сегодня многие страны ведут разработку различных проектов: подключение панелей в космическом пространстве, монтаж дорожных покрытий. К слову, уже сейчас создана и функционирует велодорожка, которая за год производит 9800 кВт/ч. Такой проект реализован в Голландии. Его эффективность уже подтверждена практическим путем. Чтобы батарея не повредилась, предусмотрено покрытие толщиной 1 см (прозрачным). Кроме того, в планах разработчиков – создание альтернативного источника питания малых габаритов, характеризующегося высокой производительностью.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *