Импульсные зарядные устройства для аккумуляторов шуруповертов

Изготовление устройства зарядного для шуруповёрта своими руками

При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.

Виды зарядных устройств

Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.

Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.

Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:

  • никель-кадмиевые (NiCd);
  • никель-металл-гидридные (NiMH);
  • литий-ионные (LiIon).
Читайте также:  Samsung s5282 аккумулятор совместимость

Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:

  • индикацию;
  • быструю зарядку;
  • разный тип защиты.

Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.

Типы применяемых батарей

Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.

Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.

Литий-ионные характеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.

Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.

Принцип работы ЗУ

При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.

Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:

Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.

При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.

Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.

Используемая кнопка SK1 работает без фиксации. При её отпускании всё питание поступает через цепочку VD7, VD6 и ограничительное сопротивление R6. И также питание подаётся на светодиод LED1 через резистор R1. Светодиод загорается, сигнализируя, что начат процесс заряда. Время работы микросхемы U1 настроено на один час работы, после чего питание снимается с транзистора Q1 и, соответственно, с реле. Его контактная группа разрывается и ток заряда пропадает. Светодиод LED1 гаснет.

Этот прибор заряда оборудован схемой защиты от перегрева. Реализуется такая защита с помощью датчика температуры — термопара SA1. Если во время процесса температура достигнет значения более 45 градусов Цельсия, то термопара сработает, микросхема получит сигнал и цепь заряда разорвётся. После окончания процесса напряжение на клеммах батареи достигает 16,8 вольт.

Такой способ зарядки не считается интеллектуальным, ЗУ не может определить, в каком состоянии находится батарея. Из-за чего продолжительность работы шуруповёрта от аккумулятора будет уменьшаться в связи с развитием у него эффекта памяти. То есть ёмкость аккумулятора каждый раз после заряда снижается.

Самодельные приборы для заряда

Самостоятельно сделать зарядку для шуруповёрта на 12 вольт своими руками, по аналогии с той, что применяется в ЗУ Интерскол, довольно просто. Для этого потребуется воспользоваться способностью термореле разрывать контакт при достижении определённой температуры.

В схеме R1 и VD2 представляют собой датчик прохождения тока заряда, R1 предназначен для защиты диода VD2. При подаче напряжения транзистор VT1 открывается, через него проходит ток и светодиод LH1 начинает светиться. Величина напряжения падает на цепочке R1, D1 и прикладывается к аккумулятору. Ток заряда проходит через термореле. Как только температура аккумулятора, к которому подключено тепловое реле, превысит допустимое значение, оно срабатывает. Контакты реле переключаются, и ток заряда начинает протекать через сопротивление R4, светодиод LH2 загорается, сообщая об окончании заряда.

Схема на двух транзисторах

Ещё одно простое устройство можно выполнить на доступных элементах. Эта схема работает на двух транзисторах КТ829 и КТ361.

Величина тока заряда управляется транзистором КТ361 к коллектору, которого подключён светодиод. Этот транзистор также управляет состоянием составного элемента КТ829. Как только ёмкость батареи начинает увеличиваться, ток заряда уменьшается и светодиод соответственно плавно гаснет. Сопротивлением R1 задаётся максимальный ток.

Момент полного заряда батареи определяется необходимым напряжением на ней. Требуемая величина выставляется переменным резистором на 10 кОм. Чтобы её проверить, понадобится поставить вольтметр на клеммах подключения батареи, не подключая её саму. В качестве источника постоянного напряжения используется любой выпрямительный блок, рассчитанный на ток не менее одного ампера.

Использование специализированной микросхемы

Производители шуруповёртов стараются снизить цены на свою продукцию, часто это достигается путём упрощения схемы ЗУ. Но такие действия приводят к быстрому выходу из строя самой батареи. Применяя универсальную микросхему, предназначенную именно для ЗУ компании MAXIM MAX713, можно добиться хороших показателей процесса заряда. Вот как выглядит схема зарядного устройства для шуруповёрта на 18 вольт:

Микросхема MAX713 позволяет заряжать никель-кадмиевые и никель-металл-гидридные аккумуляторы в режиме быстрого заряда, током до 4 C. Она умеет отслеживать параметры батареи и при необходимости снижать ток автоматически. По окончании зарядки схема на основе микросхемы практически не потребляет энергии от аккумулятора. Может прерывать свою работу по времени или при срабатывании термодатчика.

HL1 служит для индикации питания, а HL2 — для отображения быстрого заряда. Настройка схемы заключается в следующем. Для начала выбирается зарядный ток, обычно его значение составляет величину равную 0,5 C, где C — ёмкость аккумулятора в амперчасах. Вывод PGM1 соединяется с плюсом напряжения питания (+U). Мощность выходного транзистора рассчитывается по формуле P=(Uвх — Uбат)*Iзар, где:

  • Uвх – наибольшее напряжение на входе;
  • Uбат – напряжение на аккумулятор;
  • Iзар – зарядный ток.

Сопротивление R1 и R6 рассчитывается по формулам: R1=(Uвх-5)/5, R6=0.25/Iзар. Выбор времени, через которое зарядный ток отключится, определяется подключением контактов PGM2 и PGM3 к разным выводам. Так, для 22 минут PGM2 оставляется неподключенным, а PGM3 соединяется с +U, для 90 минут PGM3 коммутируется с 16 ногой микросхемы REF. Когда понадобится увеличить время зарядки до 180 минут PGM3 закорачивают с 12 ногой MAX713. Наибольшее время 264 минуты достигается соединением PGM2 со второй ногой, а PGM3 с 12 ногой микросхемы.

Зарядка шуруповёрта без зарядного

Восстановить батарею без помощи ЗУ несложно, но многие не представляют, как. Зарядить аккумулятор шуруповёрта без зарядного устройства можно, используя любой блок питания с постоянным напряжением. Величина его должна быть равной или немного больше значения напряжения заряжаемого аккумулятора. Например, для 12V батареи можно взять выпрямитель для зарядки автомобиля. С помощью клеммных зажимов и проводов подключить, соблюдая полярность, их друг к другу минут на тридцать, при этом контролируя температуру батареи.

А можно провести доработку и устройства питания с большим напряжением, воспользовавшись простым интегральным стабилизатором. Микросхема LM317 позволяет управлять входным сигналом до 40 вольт. Понадобится два стабилизатора: один включается по схеме стабилизации напряжения, а второй — тока. Такую схему можно применить и при переделке ЗУ, не имеющего узлов контроля процесса зарядки.

Работает схема совсем несложно. Во время работы образуется падение напряжения на резисторе R1, его хватает для того, чтобы засветился светодиод. По мере заряда ток в цепи падает. Через некоторое время напряжение на стабилизаторе будет малым и светодиод погаснет. Резистор Rx задаёт наибольший ток. Его мощность выбирается не менее 0,25 ватт. При использовании такой схемы аккумулятор не сможет перегреваться, поскольку устройство автоматически отключается при полном заряде батареи.

Часто можно встретить вредные советы, что зарядить аккумулятор можно, используя диодный мост и лампу накаливания на 100 Вт. Так делать категорически нельзя, потому что отсутствует гальваническая развязка и, кроме смертельного поражения электрическим током, существует большая вероятность взрыва батареи.

Originally posted 2018-04-06 09:06:40.

Источник

Зарядные устройства для зарядки шуруповерта

Внесетевой шуруповерт использует в работе энергию аккумуляторов, которая через какое-то время полностью расходуется. Чтобы восстановить емкость батарей, требуется зарядное устройство для шуруповерта.

Виды зарядных устройств

Приборы для зарядки выполняют одинаковую работу, но различаются внутренним наполнением. Выделяются трансформаторные и аналоговые конструкции. У них блок питания (БП) бывает встроенным или выносным. Более современные модели – импульсные, которые также называют инверторными.

Трансформаторные зарядки отличаются простой электронной базой.

Классическая конструкция (независимо от места расположения БП) включает такие основные элементы:

  • понижающий трансформатор;
  • выпрямительные диоды;
  • конденсаторы;
  • устройство стабилизации тока;
  • схему контроля зарядки.

Все трансформаторные зарядники имеют большие габариты и массу. Вес определяется обмоткой трансформатора, другие элементы на этот показатель влияют незначительно.

Чем меньше масса устройства, тем дольше проходит зарядка: трансформатор со слабой обмоткой выдает малый ток.

Аналоговые со встроенным блоком питания

Подобные агрегаты пользуются спросом благодаря невысокой цене. Для домашнего инструмента выбирают устройства с минимальными функциями. Основное, на что обращают внимание при выборе, – соответствующая токовая нагрузка и скорость заряда.

Аналоговые устройства с встроенным БП работают с батареями любых типов. Трансформатор понижает сетевое напряжение до 20 В. Его мощность рассчитывается по необходимой силе тока на выходе. Диоды преобразуют переменное напряжение в пульсирующее. Для сглаживания пульсации в схеме присутствуют фильтрующие конденсаторы.

Большинство устройств имеет индикатор, сигнализирующий об окончании процесса. Более современные оснащены коммутатором, отключающим зарядку при достижении аккумуляторами необходимых параметров. В остальных случаях ориентируются на время, указанное в инструкции по эксплуатации.

В комплекте с дешевыми шуруповертами идут зарядные устройства (ЗУ) с минимальной функциональностью. По этой причине они часто ломаются.

Аналоговые с внешним блоком питания

Агрегат состоит из 2 отдельных частей: сетевого блока питания и ЗУ. Электронная база стандартная, аналогичная устройствам со встроенным БП. Управляет зарядкой маленькая плата размером со спичечный коробок. Агрегаты не оснащают радиаторами для отвода тепла, из-за чего они могут перегреваться. Поэтому подобные аппараты служат недолго.

Импульсные

К профессиональным инструментам предъявляется требование продолжительной работы без подзарядки. Приборы оснащаются 2 батареями.

Зарядные устройства для них разработаны по сложной схеме, многофункциональные. Подзарядка аккумуляторов осуществляется в течение всего 1 часа.

Импульсные ЗУ отличаются:

  • небольшими размерами;
  • высоким зарядным током;
  • системой защиты самого прибора и батарей.

Наиболее часто инверторные агрегаты собирают на основе микросхемы MAX713. Выходное напряжение 25 В, сила тока постоянная.

Это умные устройства, которые вначале проверяют уровень напряжения. Затем запускается режим ускоренной зарядки, что предохраняет АКБ от нежелательного эффекта памяти. Полностью разряженный аккумулятор восстанавливает емкость за 1,5 часа. Импульсные схемы позволяют подобрать тип батарей и силу заряда.

Среди ЗУ подобного типа пользуется спросом интеллектуальный прибор «Зубр». Его микропроцессор после оценки состояния источника питания устанавливает оптимальное напряжение и силу тока зарядки. Для автономных ИП с напряжением 18 В многие отдают предпочтение инверторной зарядке «Калибр».

Типы применяемых батарей

Отдельные элементы последовательно соединены и помещены в общий корпус. Химический состав анодов и катодов определяет тип батарейного источника питания.

Сырьем для изготовления служат :

  • никель с кадмием (NiCd);
  • никель с металлогидридами (NiMH);
  • литий (Li-ion).

Емкость – основная характеристика, определяющая продолжительность беспрерывной работы инструмента. Измеряется в миллиамперах (мАч). Каждый элемент имеет свое напряжение в зависимости от типа. Самое большое у литий-ионных – 3,3 В. Напряжение на отдельном элементе никель-кадмиевых и никель-металлогидридных батарей – 1,2 В.

К достоинствам NiCd аккумуляторов относят:

  • возможность ускоренной зарядки;
  • способность выдерживать высокие нагрузки;
  • низкую цену;
  • поддержку параметров на морозе.

Емкость наименьшая среди других типов источников питания. Эффект памяти – также существенный недостаток. Перед зарядкой такого аккумулятора его требуется разрядить под нагрузкой почти до нулевых показателей.

Никель-металлогидридные элементы имеют лучшие параметры по сравнению с NiCd. По размерам они одинаковые, но емкость больше. Разработчики устранили из химического состава кадмий, поэтому изделия нетоксичные. Эффект памяти сведен до возможного минимума, саморазряд небольшой. Это средние по цене АКБ с приемлемыми характеристиками, поэтому наиболее часто применяются в шуруповертах.

У Li-ion батарей несколько важных преимуществ:

  • высокая емкость;
  • низкий саморазряд;
  • отсутствие эффекта памяти;
  • способность работать на морозе.

Но такие АКБ боятся перегрева и могут взорваться. При глубоком разряде емкость восстановить невозможно. Для уменьшения рисков используют зарядные устройства с микроконтроллером. Все положительные качества отражаются на цене, которая выше, чем у других гальванических ИП.

Тип аккумулятора, возможности зарядного аппарата прямо отражаются на стоимости инструментов. В зависимости от установленных батарей ЗУ бывают на 12, 14 и 18 Вольт.

Самодельные приборы для заряда

Повреждения промышленных зарядных устройств случаются достаточно часто. Первая причина – нестабильное напряжение в сети переменного тока, вторая – выход из строя АКБ. Если прибор не заряжает аккумулятор, решают проблему покупкой нового ЗУ, ремонтом или созданием самодельной конструкции.

Схема на двух транзисторах

Полупроводники, используемые в изделии, – транзисторы КТ829 и КТ361. Их легко купить в радиомагазине или выпаять из старой аппаратуры.

КТ361 служит для управления величиной зарядного тока. К его коллектору подключают светодиодную лампочку, яркость которой постепенно уменьшается при увеличении емкости батареи. Когда достигается полный заряд, она гаснет. Транзистор КТ361 также управляет работой КТ829. Когда емкость АКБ увеличивается, зарядный ток уменьшается.

В устройстве перед эксплуатацией выставляют необходимое зарядное напряжение. Для этого к выходным клеммам ЗУ подключают вольтметр, устройство подсоединяют к сети 220 В. В схеме присутствует переменный резистор номиналом 10 кОм, которым настраивают требуемое напряжение на выходе ЗУ.

Чтобы получить постоянное напряжение, используют трансформатор с выпрямительным блоком. Минимально требуемый ток – 1 А.

Использование специализированной микросхемы

Чтобы снизить цены на ЗУ, производители упрощают схемы. Это влияет на более быстрый выход из строя батарей. Используя интеллектуальную микросхему МАХ713, собирают самодельное устройство для зарядки аккумуляторов на 18 или 12 Вольт.

Агрегат предназначен для ускоренной зарядки NiCd и NiМН элементов питания. Микросхема контролирует их состояние: когда емкость увеличивается, автоматически понижает силу тока. Потребление энергии схемой в состоянии покоя неощутимо. Работа ЗУ прерывается по заданному времени или срабатыванием термодатчика.

Визуальный контроль за работой агрегата осуществляется с помощью встроенных светодиодов: HL1 сигнализирует о подключении устройства, HL2 – об окончании зарядки.

Для подключения источника питания служит разъем Х1. Ток БП должен превышать максимальный зарядный минимум на 50 мА. К разъему Х2 подключают батарею.

Настройку ЗУ начинают с выбора зарядного тока, который регулируется транзистором VT1. Его мощность рассчитывают, применяя формулу P=(Uвх – Uбат)×I.

  • Uвх – максимальное значение входного напряжения;
  • Uбат – вольтаж аккумулятора;
  • I – величина зарядного тока.

Рассчитывают номинал сопротивлений: R1=(Uвх -5)/5; R6=0,25I.

Время зарядки выбирают коммутированием контактов:

  • 22 минуты – PGM2 не подключают, PGM3 соединяют с +U;
  • 90 минут – PGM3 соединяют с 16 выводом микросхемы;
  • 180 минут – PGM3 закорачивают на 12 ногу;
  • 264 минуты – PGM2 коммутируют со 2 ногой, PGM3 – с 12.

Зарядка шуруповерта без зарядного устройства

Если ЗУ нет, зарядить шуруповерт можно и без него. Подойдет блок питания, дающий на выходе постоянное напряжение. Его номинал должен быть равным или немного превышать соответствующий параметр заряжаемой батареи. Для аккумулятора на 12 Вольт подойдет выпрямитель, которым заряжают автомобильные АКБ. Выходные клеммы подключают с соблюдением полярности на 30 минут, постоянно контролируя температуру заряжаемого ИП.

У многих сохранился блок питания от ноутбука. На выходе у него 19,5 В, этого достаточно для подзарядки 18-вольтовых аккумуляторов. Требуется только модернизировать выход, подключив клеммы. Для питания шуруповерта не хватает мощности этого устройства: некоторые двигатели даже не будут прокручиваться.

Совет использовать для зарядки диодный мост и лампу на 100 Вт вредный. Схема не предусматривает гальванической развязки, от чего батарея может взорваться. Кроме того, есть большой риск поражения током 220 В.

Источник

Оцените статью