Меню

Как подзаряжать аккумулятор от солнечной батареи

Заряд аккумуляторов напрямую без контроллера, 27 ячеек на АКБ

Вопрос заряда аккумуляторов от солнечных батарей напрямую без контроллеров давно меня интересует, и мои тесты это пока подтверждают. Опираясь на цифры полученные из моего MPPT контроллера, на свой опыт и информацию из сети я понял что это возможно. В стандартном варианте когда на 12-ти вольтовый аккумулятор приходится по 36 солнечных элементов зарядка напрямую неэффективна, и даже опасна. И если не контролировать напряжение заряда то можно перезарядить аккумулятор вплоть до выкипания электролита и нагрева самого АКБ. Ну или с аккумулятором ничего не случится, это если у вас слабенькая солнечная панель с током в 1 ампер, а аккумулятор автомобильный 60Ач.

Точка максимальной мощности поликристаллической солнечной панели на 36 элементах зимой по данным моего контроллера составляет 85% от напряжения холостого хода. Это равняется 18.7 вольт, но в диапазоне от 17.0в до 19.5в мощность меняется не критично, и она остаётся максимально высокой. При этом такая картина остаётся даже в пасмурную погоду. Да при отсутствии солнца точка MPPT смещается ближе к 17-18 вольт, но и при 19в мощность солнечной панели всё ещё почти максимальная.

Летом в связи с перегревом солнечных батарей точка MPPT немного ниже, и пик держится на напряжении 17.3 вольта, это 79% от напряжения холостого хода. Но правда в самую жару, когда под 40 градусов в тени, смещение может доходить до 16 вольт.

Если бы наш аккумулятор был на 18 вольт, то есть не шесть, а восемь банок, то солнечную панель к нему можно было бы подключать напрямую. При этом даже в пасмурную погоду была бы зарядка ничуть не хуже чем через MPPT контроллер. И в таком варианте аккумулятор невозможно перезарядить так как с ростом напряжения от 19в и выше ток заряда будет снижаться и падать вплоть до нуля к 21 вольт. В данном случае я говорю о кальциевых автомобильных аккумуляторах.

Но таких аккумуляторов состоящих из восьми банок не бывает, да и инверторов на 18 вольт тоже нет. Но вообще если бы солнечная панель была не на 36 элементов, а на 27 элементов. То тогда без всяких MPPT контроллеров была бы максимальная эффективность заряда, так как в этом случае высокая точка максимальной мощности была бы в диапазоне от 12.0 до 13.7 вольт. А зимой поднималась бы до 14.2 вольт и даже выше. И только когда напряжение на АКБ будет подниматься выше, то ток заряда будет сам снижаться, это связано со смещением точки MPPT, и далее более подробно.

Вообще получается интересная картина, если на 27 элементов приходится АКБ 12в. Летом когда самая жара точка максимальной мощности смещается значительно ниже. И если напряжение на АКБ начинает расти выше то ток начинает падать, и уже на напряжении выше 13 вольт падение мощности очень заметно. Получается так, точка максимальной мощности в жару будет в диапазоне 12-13 вольт, и при росте напряжения на акб до 13.5 вольт ток от солнечной панели значительно снизится. А при 14 вольт ток будет уже совсем небольшой, и так как с аккумуляторов всегда берётся какая то энергия, пусть и небольшая, то напряжение на АКБ выше подниматься не будет. Плюс сам аккумулятор будет ограничивать напряжение снижая КПД заряда.

Но чтобы так было нужно чтобы ёмкость АКБ и максимальный ток от солнечных батарей были 1:10 или более. И под аккумуляторами я подразумеваю обычные автомобильные кальциевые. То есть на панель 12в 100вт с током заряда в 5.4А подойдёт аккумулятор ёмкостью 55Ач. И летом в эту самую жару от панели на 27 элементов при 14.0-14.7в на АКБ ток заряда будет всего около 1-2А, и этот ток не сможет вскипятить аккумулятор, и напряжение не будет расти далее. А с учётом небольшого потребления из акб напряжение и до 14в возможно не поднимется. Но если аккумулятор будет не заряжен то в диапазоне 12-13 вольт заряд АКБ будет максимальным от солнечной батареи, то есть максимальный ток заряда, и уменьшаться он будет сам по мере напряжения на АКБ.

С понижением температуры картина зарядки аккумулятора будет меняться. Точка MPPT будет сдвигаться вверх и при около нулевой температуре аккумулятор будет заряжаться уже до 14-14.5 вольт и только после этого начнётся значительное падение тока от солнечной батареи состоящей из 27 элементов. При этом если даже из аккумулятора ничего не будет потребляться то сам аккумулятор начнёт ограничивать рост напряжения. И если даже напряжение вырастет до 15 вольт, то ток от солнечной батареи ещё снизится и этот ток не в состоянии будет вскипятить акб и продолжить рост напряжения на нём.

В зимние морозы точка MPPT будет ещё выше, и это тоже большой плюс. Повышенное напряжение на АКБ после глубоких разрядов, когда солнца не было несколько дней скажется на последних очень хорошо. Зимой часто аккумуляторы разряжается глубоко, в вот полностью заряжаются не часто, и тут повышение напряжения до 15 вольт и даже 16 вольт будет способствовать десульфатации. Ну а понижение тока от солнечной панели не сможет вскипятить аккумулятор.

Читайте также:  Солнечные батареи для дома сколько обходится установка

Получается идеальный балланс на круглый год, когда надо аккумулятор заряжается более полно, в зимние месяцы. А летом наоборот когда акб каждый день заряжается то его не нужно доводить до 14.7 вольт и выше.

В современных контроллерах пытаются сделать нечто подобное ступенчатым зарядом, и возможностью настройки контроллера. Но здесь при заряде напрямую от панели на 27 ячеек всё происходит само собой. Понятно что с гелевыми аккумуляторами лучше так не делать, а вот автомобильным и AGM аккумуляторам это очень понравится.

Вообще на рынке есть солнечные панели на 60 элементов, предназначены они для заряда аккумуляторов на 24 вольта. Но так как там приходится по 30 элементов на АКБ, то тут нужен обычный PWM контроллер. При этом в таком варианте даже MPPT контроллер не может дать больше чем заряд через простой PWM контроллер. Решение очень правильное, но всё же от необходимости контроллера это решение не избавляет. Зато с солнечной панели берётся почти максимальная мощность, а контроллер позволяет работать с разными типами АКБ, и PWM контроллер значительно дешевле чем MPPT.

Если же солнечные панели на 36 элементов, как у многих, и у меня в том числе, то тут можно сделать систему на 48 или 96 вольт. Если на 48 вольт то здесь четыре аккумулятора последовательно, а солнечных панелей нужно три штуки последовательно. В этом случае приходится как раз по 27 элементов на аккумулятор. Тоесть как я говорил выше получается что без всяких контроллеров можно заряжать аккумуляторы напрямую, и никак вообще не контролировать заряд АКБ. Там всё само будет происходить как надо, и с максимальным КПД.

Вообще в системе на 48 вольт одни плюсы в виде значительно меньших токов в сравнении с 12 или 24 вольта системами. Но есть такой минус как дисбаланс по напряжению в последовательно соеденённых аккумуляторах, правда и на 24 вольта тоже такая беда. Со временем этот дисбаланс усиливается и в итоге при казалось бы общем номинальном напряжении 56-60 вольт аккумуляторы заряжены, но нет. Оказывается на трёх акб уже по 14-15 вольт и они активно кипят, а на четвёртом всего 12 вольт. Потом при разряде его напряжение упадёт до 10 вольт и даже более. И вскоре вы поймёте что с аккумуляторами что то не то, не держат заряд и напряжение сильно проседает под нагрузкой.

Чтобы этого избежать придумали балансиры, и сейчас всё чаще люди их ставят. Балансиры выравнивают напряжение на аккумуляторах. Но вообще дисбаланс напряжения может произойти и в самих банках аккумулятора. Иногда бывает что умирает одна банка, и из-за неё приходится выкидывать аккумулятор. К чему я это говорю, а тому что если заряжать аккумуляторы до напряжения не выше 13.8-14.5 вольт то даже балансиры не помогут, хотя их наличие огромный плюс.

Иногда нужно аккумуляторы доводить до напряжения выше 15 вольт. При таком напряжении КПД заряда сильно снижается и начинается процесс тепловыделения, правда еле заметный при оптимальном малом токе, и процесс движения электролита. Так вот те банки в аккумуляторе, которые достигли напряжения по 2.5 вольт уже почти не заряжаются. А те банки на которых ещё по 2.1-2.3 вольта, они продолжают заряжаться и общий вольтаж постепенно выравнивается. Чем дольше аккумулятор под высоким напряжением тем лучше.

При этом нужно понимать что заряжать нужно малым током чтобы аккумулятор не закипел и не выкепал электролит, хотя водички и так нужно доливать.

Многие контроллеры этого делать не умеют. В основном в контроллерах зашиты готовые алгоритмы заряда, и вот именно они и портят АКБ. Хотя они сделаны такими чтобы можно было подключать аккумуляторы разной ёмкости, и солнечные панели, и при этом не закипятить перезарядом сами аккумуляторы. Это как бы защита от дурака. Понятно что например если у вас солнечные панели могут давать токи к примеру до 50А, а у вас там аккумулятор всего на 200Ач, то если выставить напряжение заряда в 15 вольт этот аккумулятор будет кипеть когда зарядится, и в итоге долго не проживёт. Так как нет ограничения по току то тут рекомендация уже стандартная, для гелевых не выше 13.8-14 вольт, а с жидким электролитом не выше 14.2-14.4 вольта. А вот если наоборот, большой аккумулятор и ток заряда слабенький, то тут если даже напряжение до 15 вольт поднимется то акб не закипит.

При этом в первом случае, аккумулятор при заряде до 14 вольт прослужит меньше так как после глубоких разрядов для восстановления плотности электролита напряжения 14 вольт маловато. Поэтому как бы и рекомендации не разряжать аккумуляторы глубоко.

Читайте также:  Лампочка с солнечной панелью

Как пример автоматические зарядные устройства для автомобильных аккумуляторов. Их можно гонять сутками, при этом аккумуляторы не закипают, хотя там напряжение заряда ровно 16.2 вольта, и это не случайно. Зарядное устройство повышенным напряжением заставляет кристаллы сульфата свинца растворяться, высвобождается серная кислота и растёт плотность электролита. А слабый ток заряда не даёт аккумулятору кипеть.

Ну на этом я заканчиваю, думаю смысл всего этого понятен, хотя думаю те кто не в теме вряд ли осилят. Но всёже надеюсь что это кому то было полезно и интересно. Смысл это чтобы на аккумулятор приходилось по 27 ячеек, при этом нужно чтобы ёмкость аккумулятора была в десять раз больше максимального тока от солнечной батареи, или более. Тогда при заряде напрямую сложатся идеальные условия для заряда автомобильных аккумуляторов, да впринципе и других с жидким электролитом.

Зачем это нужно спросите вы, ну во-первых это экономия на MPPT контроллере заряда, и большой плюс в надёжности так-как контроллер может сломаться. При этом отбор энергии с солнечных батарей будет не хуже с MPPT. А также так аккумуляторы будут заряжаться более правильно.

Источник

Солнечные панели для зарядки автомобильного аккумулятора

Панели на фотоэлементах для подзарядки АКБ от солнца перестали быть экзотикой. Сам факт того, что на рынке нетрудно

выделить популярные модели от ведущих производителей, свидетельствует о накоплении опыта использования подобных устройств у рядовых потребителей. Если же у кого-то из автолюбителей остались вопросы, то знакомство с данной публикацией снимет основную их часть.

Панели на фотоэлементах — уже реальность

Получение электрической энергии из солнечного света стало возможно, благодаря исследованиям множества ученых. Отправной точкой послужило открытие фотогальванического эффекта в 1839 г. Через сто с небольшим лет были изобретены полупроводниковые фотоэлектрические элементы, преобразующие излучение Солнца в постоянный ток.

Эксперименты владельцев автомобилей по прямой подзарядке АКБ бытовыми солнечными панелями подтолкнули производителей к идее выпуска специализированных устройств, способных решать сразу несколько задач, как то:

  • зарядка автомобильных аккумуляторов без нагрузки на сеть;
  • избавление от необходимости возить с собой резервные АКБ;
  • снижение риска опустошить АКБ при неработающем генераторе;
  • подзарядка аккумуляторов при простое двигателя;
  • увеличение эффективности подзарядки на ходу.

Очевидно, что для владельцев разнообразных электрокаров и гибридов – перечисленные проблемы особенно актуальны, даже если транспорт или техника оснащены бензиновым генератором.

Установка панели на автомобиль

Отдача от владения солнечной панелью резко ограничивается, если нет возможности надежно закрепить её на кузове и использовать непосредственно во время поездки.

Вместо панорамного окна в данный автомобиль аккуратно вмонтирована солнечная панель, мощности которой вполне хватит на подзарядку АКБ

Ведь в этом случае речь шла бы просто об обладании портативным генератором низкой мощности, для эксплуатации которого нужны продолжительные стоянки в течение светового дня.

Существуют три основных способа установки на автомашину модулей с фотоэлементами:

  1. На крышу, при помощи стоек (багажника). Данный способ установки простой и быстрый. Панели можно в любой момент демонтировать. Применяется в основном для поездок за город: на природу или отдых. Однако, установка на крышу ухудшает аэродинамику машины и требует очень надежной фиксации панели, но зато позволяет закрепить модуль большой площади (до 1 кв.м.) или несколько модулей размером поменьше. В условиях «солнечных» широт и стабильно ясной погоды такие устройства способны заменить собой генератор, работая в связке с АКБ.
  2. В салоне, в освещенной его части (над приборной панелью или у заднего стекла). Из-за малой площади размещения и процента потерь солнечного света при переходе через стекло возможно разместить только портативные модели. Основное назначение – освобождение АКБ от энергозатрат на обслуживание периферийной электроники, устройств мультимедиа, средств связи и прочих гаджетов. Основательно зарядить от них аккумулятор невозможно из-за их невысокой мощности.
  3. Интеграция в кузовную деталь автомобиля. Первые попытки внедрения солнечных панелей в кузов автомобиля предпринимали давно (70-80 года), однако, из-за малой эффективности панелей в то время они не вошли в обиход. Сейчас ситуация изменилась, как и панели. Солнечные модули есть гибкие, прозрачные, тонкие. Это позволяет легко монтировать панели в кузовные детали или приклеивать поверх без потери аэродинамики.

Еще один пример применения солнечной батареи на крыше автомобиля:

Панель вмонтирована в крышу автомобиля и покрыта слоем инея. однако, все равно выдает заряд. В морозное время года, когда емкость АКБ падает, солнечная панель на крыше может помочь даже завести автомобиль.

Преимущества и недостатки

У каждого устройства, и новинки есть положительные и отрицательные моменты внедрения. Со временем при работе над улучшением отрицательные моменты частично убираются, но иногда это невозможно.

К числу главных плюсов автомобильных гелиопанелей можно отнести:

  • высокую мобильность;
  • простоту в эксплуатации;
  • возможность объединения модулей для увеличения мощности;
  • независимость от стационарных источников электроэнергии;
  • реальное снижение нагрузки на АКБ (даже при простое двигателя).
  • зарядка основательно истощенного АКБ может занять от 9-12 до 100 часов;
  • прямая зависимость производительности солнечных батарей от суммарной площади поверхности фотоэлементов;
  • устройства не работают в темное время суток и зависимы от погодных условий.
Читайте также:  Прожектор с солнечными батареями для дачи

Производители

Рекомендация избегать «дешевой китайской продукции» будет бессмысленной. По большей части, ТОП-10 производителей солнечных панелей на 2019 год (согласно рейтингу Bloomberg) состоит именно из китайских компаний, часто имеющих зарубежные филиалы. Основную конкуренцию Китаю составляют:

Конечно рынок не стоит на одном месте, если компании видят востребованность и восходящий тренд в данном типе оборудования, рынок будет развиваться.

Популярные модели

В продаже существуют самосборные и готовые комплекты панелей для установки на авто мобиль. Готовые комплекты стоят дороже, однако, они более продуманнее, функциональнее, у них есть все необходимые фитинги для монтажа и реальные заявленные технические характеристики.

SunForce

Канадский производитель предлагает гелиопанель повышенной мощности (150 Вт – 8,7 А). Кроме самой панели, в комплект включены вилка и клеммы, а также контроллер зарядки, что очень важно в случае с любыми высокопроизводительными солнечными батареями.

Эти модули умеренной величины (97х35х4 см.) хорошо подходят для установки на крыше автомобиля, на катерах и некрупных яхтах.

TCM 15F

Отличительные особенности данной модели – малый вес (300 г.), гибкая конструкция и портативность (60х27х0,5 см.), что предоставляет простор для вариантов размещения. Обратной стороной выступает довольно скромная производительность (15 Вт – 1А).

Так или иначе, это очень хороший и надежный вариант для обеспечения питанием периферийной электроники и снятия части нагрузки с АКБ. Отдельного упоминания заслуживает высокое качество крепления.

Sunsei Solar Power (SE-500)

Еще одна компактная модель размером всего 37,5х36х2,6 см. Водонепроницаемый корпус заключен в металлическую рамку и может быть закреплен на кронштейне со штативом, что дает множество вариантов установки с большой свободой для вращения и углов наклона.

Солнечная панель для автомобиля Sunsei Solar Power SE 500 одна из недорогих быстросъемных моделей

Низкая мощность (7,5 Вт – 0,5 А) может быть увеличена путем объединения нескольких панелей. В итоге устройство не только обеспечит работу мультимедиа при выключенном двигателе, но и позволит подзарядить АКБ.

Как происходит зарядка автомобильного аккумулятора?

В отличие сети, где циркулирует переменный ток, солнечные панели сразу выдают постоянный, что существенно снижает вес конструкции, поскольку не нужно использовать трансформатор. Эта особенность частично компенсирует зависимость производительности гелиопанелей от их габаритов.

Дополнительное удобство связано с тем, что у большинства моделей автомобильных солнечных батарей предусмотрено два способа их подключения:

  • напрямую к АКБ (при помощи клемм);
  • через гнездо прикуривателя.

Выходной ток у большей части солнечных батарей не превышает 1 ампера, что заведомо меньше 0,1 от номинальной емкости АКБ. С другой стороны, если гелиопанель не обеспечивает номинальный зарядный ток (менее 0,08 от емкости аккумулятора), то речь может идти лишь о частичной подзарядке.

Возможность полной зарядки АКБ становится доступной при эксплуатации панелей мощностью от 30 Вт и выше (желательно 60 Вт). Для того, чтобы просто поддерживать заряд аккумулятора, может хватить 5-6 Вт.

Вариант, когда модуль обладает напряжением 12 вольт и номинальным уровнем мощности 15 Вт, можно отнести к числу оптимальных для решения большинства задач возлагаемых на вспомогательный источник питания в современном автомобиле. При грамотном использовании такой панели в связке с генератором – АКБ может быть опустошен разве что в экстремальном стечении неблагоприятных обстоятельств.

Нужен ли контроллер заряда?

Контроллер уровня заряда АКБ представляет из себя устройство, основное предназначение которого понятно из названия. Приобретать его нет необходимости, если автомобиль оснащен современным бортовым компьютером.

Индикатор уровня зарядки аккумуляторных батарей не будет лишним

При использовании компактных солнечных панелей в салоне машины для обеспечения нужд мелкой электроники – показания контроллера тоже вряд ли так уж необходимы. Но если ничего, кроме аналогового вольтметра или тестера, в автомобиле нет, то покупка прибора для мониторинга заряда в любом случае не лишена смысла.

В особенности, если в распоряжении водителя имеются мощные солнечные панели, позволяющие полностью зарядить аккумулятор. В этом случае качественный контроллер не даст перезарядить АКБ или, наоборот, не допустит его критической разрядки.

На что обращать внимание при покупке?

Приобретая солнечную панель для автомобиля, нужно иметь четкое представление о задачах, которые ему предстоит решать, и разобраться с техническими характеристиками. У портативных «салонных» моделей ограничен функционал. Даже на то, чтобы экстренно взбодрить опустошенный аккумулятор и просто запустить двигатель, их сил может не хватить.

Мощные – обладают внушительными габаритами, в силу чего их эксплуатация связана с рядом трудностей, а производительность напрямую зависит от времени суток и погодно-климатических условий. Так что даже они не выступают универсальным решением всех проблем, связанных с обеспечением «железного коня» электроэнергией.

В заключение стоит предостеречь от покупки «безымянных» гелиопанелей и призвать к проявлению осторожности в случае с малоизвестными брендами. Известны случаи, когда интенсивный нагрев от Солнца приводил к их физическому разрушению, не говоря уже о качестве их работы. Внимательное изучение тематических ресурсов и потребительских отзывов придется очень кстати.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *