Меню

Mppt контроллер для солнечных батарей своими руками

Повышающий преобразователь с MPPT контролером заряда для солнечных батарей

Устройство представляет собой простой повышающий преобразователь и ограничитель напряжения, который заряжает аккумуляторы напряжением 12В от солнечной панели напряжением 6В. Устройство также имеет функцию MPPT (Отслеживание точки максимальной мощности). Когда мы думаем о MPPT, то обычно вспоминаем про микроконтроллеры и сложные вычислительные алгоритмы мощности. Однако такие алгоритмы на самом деле не нужны.

В статье представлены два схематических решения. Первая схема просто иллюстрирует повышающий импульсный преобразователь, в то время как вторая демонстрирует самодельную рабочую схему устройства. Она рекомендуется для более продвинутых экспериментаторов, которые имеют в своем распоряжении осциллограф. Схема может также представлять интерес для студентов и тех, кто просто хочет расширить свои знания в электронике.

Схемы топологии повышающего преобразователя и схема самодельного солнечного преобразователя

Теоретические сведения о повышающем преобразователе

На схеме топологии повышающего преобразователя катушка L1 заряжается, когда транзистор Q1 открыт. Когда транзистор Q1 закрыт, катушка L1 разряжается на батарею через стабилитрон D1. Выполнение данной операции в течение нескольких тысяч раз в секунду в результате приведет к существенному выходному току. Этот процесс также называется индуктивным разрядом. Для его функционирования необходимо, чтобы входное напряжение было ниже выходного. Также при наличии солнечной панели необходимо использовать элемент хранения энергии – конденсатор (C1), который позволит солнечной панели непрерывно выдавать на выход ток между циклами.

Описание принципиальной схемы повышающего преобразователя

Схема состоит из трех основных блоков, включая генератор стробирующих импульсов на базе 555 МОП-интегральной схемы, 555 ШИМ модулятор и операционный усилитель с ограничителем напряжения. 555 серия с каскадным выходом может обеспечить ток около 200мА и позволяет создать отличный маломощный генератор импульсов. 555 ШИМ модулятор является классической генераторной схемой на базе 555 серии. Для регулировки времени разряда конденсатора C3 (время заряда катушки), на вывод 5 подается напряжение величиной 5В.

Ограничение напряжения

Операционный усилитель U1A вычисляет сигнал напряжения батареи, когда разделенное установленное значение напряжения сравнивается с эталонным напряжением величиной 5В. Когда напряжение превышает установленное значение, выход переключается в отрицательном направлении, снижая, таким образом, частоту импульсов ШИМ генератора и ограничивая любой последующий заряд. Это эффективно предотвращает перезаряд.

Питание схемы от солнечной панели

Для предотвращения ненужного разряда батареи, когда солнце не светит, все цепи запитываются через солнечную панель, за исключением делителя напряжения с обратной связью, который потребляет около 280мкА.

MOSFET логического уровня

Поскольку схема должна работать при низких уровнях напряжения (данная схема работает от входного напряжения не ниже 4В), необходимо установить MOSFET логического уровня. Он будет открываться при напряжении 4.5В. Для этой цели я использовал мощный МОП-транзистор MTP3055.

Фиксация напряжения с помощью стабилитрона D2

В этой схеме НЕЛЬЗЯ ОТСОЕДИНЯТЬ батарею, в противном случае MOSFET-транзистор сгорит. Поэтому для его защиты я установил стабилитрон D2 напряжением 24В. Без этого стабилитрона у меня самого сгорело много МОП-транзисторов.

функцияMPPT

Когда напряжение / ток солнечной панели увеличивается, ШИМ генератор повышает частоту импульсов, что в свою очередь приводит к увеличению выходного тока. В то же время, дополнительное напряжение прилагается к катушке, увеличивая, таким образом, ее зарядный ток. В результате повышающий преобразователь действительно «прилагает большие усилия» при повышении напряжения или «ослабевает», когда напряжение снижается. Для максимальной передачи энергии при ярком солнечном свете выполняется регулировка потенциометра R8 так, чтобы зарядный ток батареи был максимальным – это и будет точка максимальной мощности. Если схема работает правильно, то будет наблюдаться очень плоский пик при вращении R2. Диод D3 выполняет автоматическую MPPT регулировку более точно посредством вычитания фиксированного напряжения из разницы напряжения между батареей и средним напряжением через конденсатор C3. В условиях низкого освещения вы обнаружите, что резистор R3 не является оптимальным, однако он не будет полностью исключен из цепочки. Заметьте, что интеллектуальные MPPT контроллеры также могут лучше работать при полном диапазоне, однако это улучшение крайне малоэффективно.

Читайте также:  Солнечные батареи для пассивного дома

Номиналы компонентов

Схема настроена на напряжение 9В, солнечная панель на мощность 3Вт. Повышающие преобразователи весьма привередливы и не будут работать в широком диапазоне условий – если ваша система использует другие пределы номинальной мощности для солнечной панели, тогда ждите проблемы. Единственные компоненты, которые требуют настройки, катушка L1 и конденсатор C3. Я был удивлен, что частота повторений оказалась очень низкой (около 2кГц). Я начал с катушки индуктивностью 100мкГ, однако схема работает лучше при индуктивности 390мкГ – первоначально я хотел получить около 20кГц. Для наилучшей работы выполняйте заряд катушки от 5 до 10 раз по отношению к току солнечной панели, затем обеспечьте продолжительный период времени (3X), чтобы катушка могла полностью разрядиться. Это обеспечит приемлемую работу, когда напряжение источника питания будет близко к напряжению батареи. Заметьте, что низкоомные катушки обеспечивают наилучшую эффективность. Наибольшая потеря действительно происходит в диоде Шотки, и наименьшая потеря это то, для чего эти диоды предназначены.

Работа при высокой частоте обычно предпочтительна. Это позволит минимизировать размер катушки. Однако для эксперимента, используйте катушку, которая будет работать лучше всего.

Предлагаемые компоненты указаны на схеме. Естественно, зарядное устройство можно приспособить в соответствии со своими требованиями.

Источник

Как сделать контроллер заряда аккумулятора своими руками

Пост опубликован: 8 ноября, 2019

Контролер заряда – это электронное техническое устройство предназначенное для управления работой гелио установки в заданном режиме.

Данный процесс выражается в контролировании режима заряд-разряд аккумуляторной батареи, а также управлении работой солнечных батарей и подключения нагрузки в соответствии с оптимальными параметрами использования накопленной энергии.

Наличие контроллера заряда в составе оборудования солнечной электрической станции позволяет ее использовать в автоматическом режиме

Контроллер заряда солнечной батареи своими руками

В специализированных компаниях, а также торговых сетях занимающихся электронным оборудованием можно приобрести контроллеры заряда, выпускаемые различными компаниями производителями, как отечественными, так и зарубежными.

Подобное оборудование стоит достаточно дорого, поэтому для снижения стоимости гелио установки и сокращения сроков ее окупаемости, подобное устройство можно собрать своими руками.

В этом случае, конечно же, необходимо уметь пользоваться паяльником и иметь хотя бы начальные знания касающиеся электронных устройств и способах их монтажа.

О том, как сделать контроллер заряда для солнечной батареи своими руками мы расскажем в настоящей статье нашего проекта.

Схема контроллера заряда

Существует множество схем подобного оборудования, различающихся по степени сложности изготовления и техническим возможностям готового изделия после его сборки.

Читайте также:  Солнечные батареи работают от ультрафиолета

Конкретную схему каждый пользователь выбирает для себя сам, ориентируясь на свой опыт работы с электронными изделиями и умением их собирать самостоятельно.

На ниже следующем рисунке приведена схема контроллера, о сборке которого будет рассказано далее.

Конструктивная схема контроллера заряда аккумуляторной батареи на основе двух микросхем

Комплектующие для самодельного контроллера управления работой солнечной батареи

Для сборки контроллера по выше приведенной схеме потребуются следующие комплектующие, а именно:

  • Микросхемы — LM385-2.5 (2 шт.);
  • Конденсаторы – емкостью 100 пф (2 штуки) и 1000 пф (1 штука);
  • Диоды — SB540 (1 штука) или аналогичный с рабочим током равным максимальному току, вырабатываемому солнечной батареей, а также диод Шотки;
  • Транзисторы — BUZ11, BC548, BC556;
  • Резисторы — R1 – 1k5, R2 – 100k, R3 – 68k, R4 и R5 – 10k, R6 – 220k, R7 – 100k, R8 – 92k, R9 – 10k, R10 – 92k.
  • Светодиодный индикатор – 1 штука.

Принципиальная схема контроллера заряда на основе двух микросхем типа LM385-2.5

Важно! Данная схема рассчитана на работу с одной солнечной батареей, способной вырабатывать максимальный ток 4,0 Ампера и аккумулятором, емкость которого составляет 3000 А/час.

При необходимости комплектующие можно заменить, а также усовершенствовать данную схему, если появиться такая необходимость.

Вот некоторые советы по замене комплектующих:

  1. Если заменить микросхемы, то следует менять и конденсатор С2 (его емкость должна соответствовать новым характеристикам микросхем).
  2. При невозможности приобрести резисторы сопротивлением 92К (R8 и R10 на схеме), их следует заменить на два подключаемых последовательно, сопротивлениями 82 и 10 К.

К сведению! При использовании солнечных панелей, максимальный ток которых более 4,0 А, необходимо использовать более мощные транзисторы и диоды, чем указанных в рассматриваемой схеме.

Принцип работы собираемой схемы

В темное время суток, когда солнечная батарея не вырабатывает электрический ток, контроллер находиться в режиме ожидания (спящий режим).

При попадании солнечных лучей на фотоэлектрические элементы гелио установки, начинается вырабатываться электрический ток, и при достижении напряжения, равного 10,0 В контроллер включается в работу (электрический ток подается на клеммы аккумулятора).

Когда напряжение станет равным 14,0 В, включается в работу усилитель U1 и зарядка прекращается (в это время разряжается конденсатор С2).

После разрядки конденсатора напряжение падает и закрывается мощный транзистор (VT3 на схеме) и зарядка АКБ возобновляется.

Разнообразие моделей готовых контроллеров заряда позволяет выбрать нужную по техническим характеристикам и в заданном ценовом диапазоне

Сборка контроллера заряда аккумулятора

Для того, чтобы было удобно использовать собираемую конструкцию, необходимо подобрать корпус, в котором будет размещена плата с установленными на нее электронными составляющими и изготовить саму эту плату.

В магазинах группы «Сделай САМ» можно приобрести специальные заготовки для изготовления печатных плат, представляющие собой диэлектрик (стеклотекстолит) в виде пластины, на который нанесен слой меди или иного токопроводящего материала.

Изготовление печатной платы осуществляется в следующей последовательности:

  1. На бумаге рисуется шаблон, соответствующий схеме, предполагаемой к размещению на печатной плате. На шаблоне прорисовываются дорожки между элементами схемы, а также места установки этих элементов.
  2. Подбирается заготовка печатной платы нужного размера (если необходимо, то излишки обрезаются при помощи ножовки по металлу).
  3. Шаблон приклеивается при помощи клея «Момент» на подготовленную заготовку.
  4. В местах крепления элементов схемы просверливаются отверстия (сверло диаметром 0,7 – 0,8 мм).
  5. Шаблон удаляется, а на заготовке платы, между просверленными отверстиями, прорисовываются дорожки связи (для этого используется краска стойкая к водным растворам).
  6. Когда дорожки и места пайки электронных составляющих прорисованы, можно приступать к травлению платы.

Важно! Перед нанесением краски на поверхность печатной платы ее следует обезжирить при помощи бензина, ацетона или простого моющего средства.

К сведению! Травление, в домашних условиях, можно выполнить с помощью перекиси водорода или раствором хлорного железа.

Травление осуществляется следующим образом, а именно:

  • В специальную емкость, стойкую к воздействиям химических веществ (стекло, эмалированная посуда и т.д.) наливается подготовленный раствор;
  • Затем в раствор погружается печатная плата с нанесенным на него рисунком.
  • Когда токопроводящий слой, в местах, где отсутствует краска, раствориться, плата достается из раствора, после чего обливается проточной водой;
  • После этого заготовка вытирается насухо и с ее поверхности удаляется краска, обозначающая электрические дорожки (используется наждачная бумага).
Читайте также:  Лучшие китайские солнечные панели

Когда краска будет удалена, печатная плата готова к размещению электронных элементов схемы.

Внешняя печатная плата изготовленная своими руками

В соответствии с выбранной схемой и шаблоном размещения комплектующих, выполняется впаивание элементов конструкции, в местах где просверлены монтажные отверстия.

Готовая плата помещается в подготовленный корпус, на котором монтируются места вывода контактов к источнику электрического тока (солнечная батарея) и накопительному элементу гелио системы (аккумуляторная батарея).

Проверятся работоспособность собранной схемы, и выполняется установка собранного контроллера в выбранном месте размещения.

Отличительные особенности МРРТ и ШИМ контроллеров и как это отражается при изготовлении их своими руками

Отличительной особенностью МРРТ моделей, является высокий КПД. Работа подобных приборов основана на поиске максимальной точки мощности, определяемой на соотношении силы тока и напряжения на источнике электрической энергии (солнечная батарея).

ШИМ устройства – это более дешевые приборы, работающие по принципу широтно-импульсной модуляции.

При изготовлении подобных устройств своими руками наиболее просто изготовить ШИМ-прибор, но для использования в автоматическом режиме все-таки лучше МРРТ аналоги, об одном из которых было рассказано выше.

Достоинствами подобных устройств являются:

  • Универсальность использования (гелио и комбинированные системы, ветровые генераторы).
  • Возможность создания оптимальных условий для заряда АКБ, даже при низкой освещенности, что увеличивает срок их эксплуатации;
  • Высокий КПД использования.

Недостатки тоже есть, их можно сформулировать следующим образом:

  • Высокая стоимость у готовых изделий;
  • Сложность при изготовлении своими руками, обусловленная технологией обеспечивающей работу устройства.

В заключение хочется отметить, что даже сложные приборы можно изготовить самостоятельно в домашних условиях, используя электронные комплектующие заводского производства, а главными условиями успеха в этом деле, будет желание и умение работать своими руками.

Спасибо, что дочитали до конца! Не забывайте подписываться на канал, Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.

Источник