Солнечные батареи панели кремний

Методы производства солнечных элементов

Более 85% солнечных батарей производятся на основе моно и поли кремния. Технология их производства достаточно трудная, длительная и энергоемкая. Но обо всем по порядку.

Основные этапы изготовления солнечных монокристаллических элементов:

Получение «солнечного» кремния.

В качестве сырья используется кварцевый песок с высоким массовым содержанием диоксида кремния (SiO2). Он проходит многоступенчатую очистку, чтобы избавиться от кислорода. Происходит путем высокотемпературного плавления и синтеза с добавлением химических веществ.

Выращивание кристаллов.

Очищенный кремний представляет собой просто разрозненные куски. Для упорядочивания структуры и выращиваются кристаллы по методу Чохральского. Происходит это так: куски кремния помещаются в тигель, где раскаляются и плавятся. В расплав опускается затравка – так сказать, образец будущего кристалла. Атомы, располагаются в четкую структуру, нарастают на затравку слой за слоем. Процесс наращивания длительный, но в результате образуется большой, красивый, а главное однородный кристалл.

Обработка.

Этот этап начинается с измерения, калибровки и обработки монокристалла для придания нужной формы. Дело в том, что при выходе из тигля в поперечном сечении он имеет круглую форму, что не очень удобно для дальнейшей работы. Поэтому ему придается псевдо квадратная форма. Далее обработанный монокристалл стальными нитями в карбид — кремниевой суспензии или алмазно — импрегнированной проволокой режется на пластинки толщиной 250-300 мкм. Они очищаются, проверяются на брак и количество вырабатываемой энергии.

Читайте также:  Зарядка повербанк от солнечной панели

Создание фотоэлектрического элемента.

Чтобы кремний мог вырабатывать энергию, в него добавляют бор (B) и фосфор (P). Благодаря этому слой фосфора получает свободные электроны (сторона n-типа), сторона бора – отсутствие электронов, т.е. дырки (сторона p-типа). По причине этого между фосфором и бором появляется p-n переход. Когда свет будет падать на ячейку, из атомной решетки будут выбиваться дырки и электроны, появившись на территории электрического поля, они разбегаются в сторону своего заряда. Если присоединить внешний проводник, они будут стараться компенсировать дырки на другой части пластинки, появится напряжение и ток. Именно для его выработки с обеих сторон пластины припаиваются проводники.

Сборка модулей.

Пластинки соединяются сначала в цепочки, потом в блоки. Обычно одна пластина имеет 2 Вт мощности и 0,6 В напряжения. Чем больше будет ячеек, тем мощнее получится батарея. Их последовательное подключение дает определенный уровень напряжения, параллельное увеличивает силу образующегося тока. Для достижения необходимых электрических параметров всего модуля последовательно и параллельно соединенные элементы объединяются. Далее ячейки покрывают защитной пленкой, переносят на стекло и помещают в прямоугольную рамку, крепят распределительную коробку. Готовый модуль проходит последнюю проверку – измерение вольт — амперных характеристик. Все, можно использовать!

Соединение самих солнечных батарей тоже может быть последовательным, параллельным или последовательно-параллельным для получения требуемых силы тока и напряжения.

Наглядное видео о этапах автоматической сборки, включая: пайку, ламинирование, коммутацию ячеек, установку распределительной коробки, стекла и алюминиевой рамы:

Производство поликристаллических батарей отличается только выращиванием кристалла. Есть несколько способов производства, но самый популярный сейчас и занимающий 75% всего производства это Сименс — процесс. Суть метода заключается в восстановлении силана и осаждении свободного кремния в результате взаимодействия парогазовой смеси из водорода и силана с поверхностью кремниевых слитков, разогретой до 650-1300°C. Освободившиеся атомы кремния, образовывают кристалл с древовидной (дендритной) структурой.

Тонкопленочные батареи производятся в основном по технике испарительной фазы. Сырьем для аморфных фотопреобразователей является кремневодород (силан, SinH2n+2). Он напыляется на материал подложки (стекло, керамика, металлические или полимерные ленты и пр.) слоем менее 1 мкм. Водород в составе аморфного кремния (5-20%) меняет его электрофизические свойства и придает ему полупроводниковые качества.

Производство аморфных преобразователей значительно проще кристаллических: без труда создаются пластины площадью более 1 м при температурах осаждения всего 250-400°C. К тому же их полупроводниковыми свойствами можно управлять, подбирая соединения компонентов пленки для получения требуемых параметров.

Технология производства солнечных CIGS батарей тоже заключается в напылении полупроводников. Делается это с помощью вакуумных камер и электронных пушек. Медь (Cu), индий (In) или галлий (Ga) напыляются путем последовательного осаждения на подложку из стекла, покрытой молибденом слоем в 1 мкм. Полученная структура обрабатывается парами селена (Se).

Есть еще один способ изготовления CIGS батарей – метод трафаретной печати или струйного напыления. Основан он на использовании суспензии из частиц металлических оксидов. Ее вязкость позволяет получать как бы чернила для печати. «Бумагой» же могут быть разные материалы: стекло, фольга, пластик.

Метод трафаретной печати для изготовления тонкопленочных батарей используется только известными «солнечными» производителями. Имеет такие преимущества, как высокий коэффициент использования материалов (от 90%), сравнительная дешевизна оборудования, приличный КПД готового продукта – 14%.

Производство кристаллов арсенид галлия, может осуществляться, как и монокристаллов кремния, методом Чохральского — горизонтальной или вертикальной направленной кристаллизации. Кристаллы получаются путем вытягивания их вверх от свободной поверхности большого объёма расплава с инициацией начала кристаллизации путём приведения затравочного кристалла. На картинке приведены схемы выращивания.

Источник

Аморфные солнечные батареи: изготовление, преимущества, область применения

Дата публикации: 3 мая 2019

Создание первых образцов аморфных пленочных батарей стало новым открытием в сфере альтернативных источников электрической энергии. За несколько лет модель удалось усовершенствовать, добившись от простой конструкции выдающихся технико-эксплуатационных характеристик. Эксперты, занимающиеся исследованиями в области энергетики, утверждают: очень скоро аморфные солнечные панели займут лидирующее положение в своем сегменте и будут запущены в массовое производство.

Технологии производства солнечных панелей из аморфного кремния

Изготовление моделей солнечных панелей осуществляется с использованием тщательно очищенного кремния цилиндрической формы диаметром несколько десятков миллиметров. Заготовку режут на диски толщиной в несколько микрон, после чего подвергают легированию. В обработанной пластине образуются области с разной электрической проводимостью, в зависимости от количества электронов, – р-проводимостью и n-проводимостью. Соединение нескольких дисков в различных вариантах позволяет получить пластину, вырабатывающую электрическую энергию под воздействием света. В качестве основы для пластины кремния могут выступать:

  • специальные виды керамики;
  • стекло особой очистки;
  • кристаллы сапфиров и другие материалы, обладающие светопропускной способностью.

Благодаря безотходному характеру производства, готовые панели имеют относительно невысокую стоимость, что немало способствует их популярности.

Этапы совершенствования аморфных солнечных батарей из кремния

Быстрое развитие и постоянное усовершенствование технологии производства панелей позволило предложить на выбор сразу несколько поколений устройств:

  • первое поколение – так называемые однопереходные конструкции с относительно низким КПД до 5% и непродолжительным сроком службы;
  • второе поколение – доработанные модели с КПД до 8% и увеличенным сроком эксплуатации, идеальное сочетание качества и стоимости;
  • третье поколение – эффективные батареи с КПД до 12%, которые планируется запустить в массовое производство.

Не уступая своим прямым конкурентам – кристаллическим батареям – по уровню мощности, аморфные солнечные батареи значительно опережают их по доступности цене.

Плюсы и минусы аморфных солнечных панелей

В числе основных достоинств конструкций из кремния стоит отметить:

  • незначительную потерю мощности в условиях стабильного повышения температуры. В отличие от кристаллических моделей, теряющих до 20% первоначальной мощности, аморфные солнечные батареи сохраняют эффективность на всем протяжении солнечного сезона года;
  • возможность эксплуатации в условиях рассеянного освещения, благодаря которому объем вырабатываемой электроэнергии увеличивается на 20%. В свою очередь кристаллические панели в условиях рассеянного освещения практически бесполезны;
  • вопрос стоимости. Цена ватта мощности кремниевых батарей ниже, чем этот же показатель у кристаллических моделей. Удешевлению альтернативной энергии дополнительно способствует усовершенствование производственного процесса и применение инновационных технологических решений;
  • незначительный процент дефектов в готовом изделии за счет простой конструкции без сложных соединений элементов;
  • незначительную потерю мощности в условиях пасмурной погоды, когда кристаллические модели теряют до 25% в условиях недостаточного освещения или загрязнения поверхности.

Единственное, в чем проигрывают аморфные солнечные панели, – это пониженный КПД, в 2 раза отличающийся от уровня КПД кристаллических батарей. Однако этот недостаток полностью компенсируется перечисленными преимуществами.

Рекомендации по применению солнечных батарей из аморфного кремния

Благодаря преимуществам устройства можно без ограничений эксплуатировать:

  • при повышенной облачности;
  • жаркой погоде с повышением температуры воздуха до 55°С и выше;
  • минимальных ограничениях по весу и размеру источника энергии;
  • необходимости встроить батарею в стену или оконные проемы, установить непосредственно на фасад здания.

Использование в качестве основы под кремниевые пластины гибких материалов с хорошей светопропускной способностью позволяет использовать батареи в пошиве дизайнерских моделей одежды и аксессуаров. Кроме того, им находят полезное применение в бытовых условиях, для которых актуально получение недорогой электроэнергии. Возможно, дальнейшее совершенствование производства дополнительно расширит сферу применения кремниевых батарей и дополнительно снизит их себестоимость.

  • Отопление дома – просим помощи у Солнца
  • Студенческая разработка повышает эффективность солнечных батарей на 20%
  • Возможности солнечной энергии
  • Какой контроллер выбрать для солнечных батарей

Вам нужно войти, чтобы оставить комментарий.

Источник

Солнечные батареи из аморфного кремния: плюсы и минусы

Помимо классических монокристаллических и поликристаллических панелей, несколько лет назад большой популярностью начали пользоваться солнечные батареи из аморфного кремния. Долгое время они практически не применялись, причиной чему был крайне низкий КПД. Однако с переходом на тонкопленочную технологию изготовления производительность A-Si значительно выросла. Сегодня их широкое использование базируется на удачном соединении низкой себестоимости.

Панели из кристаллического и аморфного кремния – главные отличия

Несмотря на использовании во всех трех типах батарей одинакового полупроводникового материала – кремния – Moni-Si, Poli-Si и A-Si имеют одно важное конструктивное отличие. Заключается оно в форме поглощающей фотоны поверхности.

  1. Moni-Si. В монокристаллических ячейках игольчатые поверхности кристаллов расположены под одним углом. По этой причине при строго вертикальном падении лучей уровень генерации таких ячеек максимален, но при малейшем отклонении угла от 90° эффективность резко падает.
  2. Poli-Si. Из-за иной технологии выращивания кристаллов их поглощающие грани размещены разнонаправлено. Это несколько снижает коэффициент поглощения солнечной энергии при прямом падении лучей, но повышает при угловом.
  3. A-Si. Солнечные батареи из аморфного кремния обладают «рыхлой» поверхностью, под электронным микроскопом напоминающей пену. Главное ее преимущество – практически неизменный показатель поглощения, независимо от углов наклона к солнцу и азимута на него. В ясную погоду это качество является негативным. Но в регионах с преобладанием пасмурных дней среднегодовая производительность A-Si имеет хорошие показатели. Несмотря на достаточно низкий (в сравнении с поли- и монокристаллом) номинальный КПД.

Более эффективен последний тип батарей и в условиях постоянной загазованности окружающей среды, а также в местностях с частыми пылевыми бурями.

Краткая история совершенствования панелей из аморфного кремния

В качестве полупроводника этот материал впервые привлек внимание ученых только в 1980-х. Такое внимание он заслужил рядом уникальных свойств, главными из которых была простота производства и возможность создавать токопроводящие поверхности любого размера.

Поначалу аморфный кремний использовался исключительно в электронном оборудовании, и только к концу 20 века были изготовлены первые фотоэлектрические элементы на его основе. За последующие 20 лет было создано три поколения солнечных батарей A-Si, каждое из которых существенно превосходило предыдущее.

  • Первое поколение – однопереходные ячейки. Плюс – дешевое производство. Минус – срок службы около 10 лет и КПД менее 5%.
  • Второе поколение – усовершенствованная модификация ранних моделей. Плюс – увеличение срока службы до 20 лет. Минус – все еще низкая эффективность порядка 8%.
  • Третье поколение – принципиально новая технология. Аморфный кремний стал наноситься на подложки путем испарения с последующей конденсацией. Плюс – новые панели стали гибкими и долговечными. Минус – КПД пока так и не достиг уровня кристаллической фотовольтаики, хотя и поднялся до 14-16%.

Тем не менее, даже при такой эффективности батареи A-Si начали конкурировать с монокристаллическими и поликристаллическими аналогами. Характерен один из экспериментов, проведенный Институтом Высоких Температур (ИВТАН) в Москве. На одном из зданий было установлено два типа панелей – монокристаллических и аморфных. В условиях мегаполиса, расположенного в умеренно высоких широтах, оба типа батарей сгенерировали за год:

  • A-Si – 726 кВт*ч / 1кВт;
  • Moni-Si – 689 кВт*ч / 1кВт.

При этом номинальный КПД первых составлял всего 14,8%, а вторых – 22,9%.

Отдельно стоит выделить гибридную технологию гетероструктурных батарей, когда солнечные элементы формируются и на основе аморфного кремния, и кристаллического кремния. Такой подход позволяет повысить генерацию при экстремально высоких и низких температурах, а также в условиях низкой освещенности (в сравнении с моно/поли), а в обычных условиях — генерировать больше, чем чистый аморфный кремний. Такую технологию производства солнечных батарей использует, в том числе, и отечественная компания Хевел.

Достоинства и недостатки аморфного кремния – краткие итоги

Среди основных преимуществ таких солнечных батарей можно выделить следующие:

  1. Минимальный температурный коэффициент. Высокие температуры практически не оказывают влияния на эффективность панелей A-Si. Если у монокристаллов нагревание рабочей поверхности выше 25°C приводит к падению КПД на 0,5% каждый градус, то у тонких аморфных пленок этого не наблюдается.
  2. Высокий уровень генерации при слабом освещении. В условиях облачности, рассеивания света пылью или газами и при низко стоящем солнце A-Si на 15-20% производительнее, чем, соответственно, Poli-Si и Moni-Si. Они продолжают генерировать энергию даже при сильном дожде, когда выработка моно- и поликристаллов падает практически до нуля.
  3. Незаметность. Особенности строения, малая толщина и отсутствие кристаллической решетки делают солнечные панели из аморфного кремния похожими на полупрозрачную полимерную пленку. Похожими свойствами обладают и перспективные модели других типов тонкопленочных батарей, но последние гораздо менее эффективны.
  4. Отсутствие брака. Процедура изготовления A-Si не требует использования пайки – наиболее «слабого места» традиционных типов фотовольтаики. Несмотря на дешевизну, высокую скорость и простоту производства, бракованные аморфные пленки практически не встречаются.
  5. Слабая реакция на частичное затенение. Еще одна огромная проблема традиционных СЭС, никак не затрагивающая аморфный кремний. Падение тени на любую часть панели A-Si незначительно влияет на ее работоспособность.

Единственным недостатком этой разновидности батарей является пока еще недостаточная удельная мощность. Но вероятность ее выхода на КПД солнечной батареи около 20% уже в следующем поколении очень высока.

Области применения

Сферы использования панелей из аморфного кремния диктуется их главными достоинствами. Наиболее часто пленки A-Si рекомендуются к применению в следующих случаях:

  • значительной загазованности и/или запыленности воздуха;
  • преобладания неблагоприятных погодных условий, прежде всего частой облачности и осадков;
  • высоких среднегодовых температур окружающей среды;
  • сложности или инженерная нецелесообразность установки панелей в оптимальное положение относительно солнца;
  • при стремлении использовать полупроводниковые элементы в качестве полупрозрачных стекол или пленки – довольно частое дизайнерское решение в современном мире.

Как основной источник энергии батареи из аморфного кремния пока малоэффективны. Однако в качестве альтернативного ее поставщика – особенно в паре с аккумуляторами – их применение встречается все чаще.

Источник

Оцените статью