Меню

Внутренний фотоэффект солнечные батареи

Внутренний фотоэффект солнечные батареи

Внутренний фотоэффект — перераспределение электронов по энергетическим уровням в диэлектриках и полупроводниках (но не в металлах) под действием света. Если энергия кванта hv падающего света превышает ширину запрещенной зоны в диэлектрике или полупроводнике, то электрон, поглотивший квант, переходит из валентной зоны в зону проводимости. В результате этого перехода образуется пара носителей: в зоне проводимости электрон, а в валентной зоне — дырка. Таким образом, в зоне проводимости появляются носители заряда, и при включении полупроводника в цепь по ней будет протекать ток или при приложении внешнего электрического поля будет протекать ток, изменяющийся в зависимости от освещенности.

Внутренний фотоэффект приводит:

  1. К изменению концентрации носителей в зоне проводимости (т.е. изме­нению проводимости);
  2. Возникновению фото ЭДС.

На использовании внутреннего фотоэффекта основано действие фотоэлементов – устройств, преобразующих световую энергию в электрическую, или изменяющих свои свойства под действием падающего света. Изменяющие свойства работают ка внутреннем фотоэффекте: фотосопротивления (ФС), фотодиоды (ФД), фототранзисторы (ФТ), фоторезисторы, фотомикросхемы. Оптоэлектронная пара — в одном корпусе заключены источник света и фотоприемник — используются для гальванической развязки цепей.

Устройства, преобразующие световую энергию в электрическую, используют вентильный фотоэффект (разновидность внутреннего фотоэффекта) — возникновение фото ЭДС на pn переходе или на границе металла с полупроводниками. Устройства на вентильном фотоэффекте используются в фотоаппаратах, в солнечных батареях, в калькуляторах, на спутниках, в некоторых домах. Фотоэлементы используются также в фотометрии, спектрометрии, в астрофизике, биологии и т.д.

Внешний фотоэффект используется в вакуумных фотоэлементах, фотоумножителях, в видиконах (трубки теле — и видеокамер) и т.д.

Масса и импульс фотона. Давление света

  1. Фотон — это квант света. Согласно гипотезе световых квантов Эйнштейна, испускание, поглощение и распространение света происходит дискретными порциями (квантами), названными фотонами (фото – свет). Энергия фотона:

Эйнштейн получил формулу, связывающую массу и энергию. Формула Эйнштейна:


Для фотона Е= Е, следовательно . Отсюда масса фотона:

Читайте также:  Зарядить солнечную батарею через стекло

Фотон отличается от макроскопических тел и элементарных частиц тем, что он является элементарной частицей света, которая в любой среде движет­ся со скоростью света и не имеет массы покоя m 0 фотона = 0.

Масса покоя — это масса, которой обладает частица при V =0, т.о., покоящихся фотонов не суще­ствует. Если свет остановить, то это означает, что энергия света поглотится веществом и света не будет. Массу фотона следует считать полевой массой, это означает, что свет обладает массой связанной с элементарным полем све­товой волны. Фотон обладает энергией, но всякой энергия соответствует мас­са (это следует из ).

Если понимать под Е энергию электромагнитного поля, то под m следует понимать массу электромагнитного поля световой волны, т.о., поле, как и вещество, имеет энергию и массу. Поле — одна из форм существования материи. Наличие у поля энергии и массы является доказательством материальности электромагнитного поля.

  1. Помимо энергии и массы, фотон обладает импульсом Р. В общей теории относительности получена связь между энергией и импульсом:

где с= 3 · 10 8 м/с,

m — масса покоя, т.к. для фотона m = 0, то. Е =ср, следовательно,

Из сказанного выше следует, что фотон, как и любая другая частица, обладает энергией, импульсом и массой. Эти корпускулярные характеристики фотона связаны с волновой характеристикой света – частотой:

Проявление корпускулярно-волновой двойственности свет а — свет является волной и частицей.

Экспериментальным доказательством наличия у фотона импульса является световое давление. Излучение, падающее на поверхность тела, оказывает на него давление. Вектор в олны приводит в упорядоченное движение элементарные заряды в веществе, а магнитное поле действует на эти заряды с силой Лоренца. Эта сила оказывается направленной в сторону распространения излучения. Равнодействующая всех этих сил воспринимается как давление, оказываемое излучением на тело. Это объяснение давления с волновой точки зрения. С точки зрения квантовой теории давление света на поверхность обусловлено тем, что каждый фотон при соударении с поверхностью передает ей свой импульс.

Читайте также:  Универсальные аккумуляторы с солнечными панелями

Пусть свет падает на нормали к поверхности. Если в единицу времени ( t = 1с) на единицу площади ( S = 1м 2 ) поверхности тела задает N фотонов, то при коэффициенте отражения

света от поверхности ρ – N фотонов отразится, а (1 – ρ) N — поглотится. Каждый фотон, поглощенный поверхностью, передаст ей импульс

а каждый отраженный

Давление света на поверхность равно импульсу, который передают поверхности в 1 с N фотонов:

где — энергетическая освещенность — энергия всех фотонов, падающая на единицу поверхности в единицу времени, , — объемная плотность энергии.

Давление света при нормальном падении

Давление света, если свет падает под углом і:

Число фотонов в единице объема (концентрация фотонов):

[ n ] = м -3 .

Число фотонов, падающих в единицу времени на единицу площади:

Эффект Комптона

Еще одним эффектом, в котором проявляются корпускулярные свойства света, является эффект А. Комптона (1923 г.), заключающийся в изменении длины волны, рассеянного легкими атомами (парафин, графит, бор) рентгеновского излучения.

Схема опытов Комптона: монохроматические рентгеновские лучи, создаваемые рентгеновской трубкой А, проходят через диафрагмы Д и узким пучком направляются на легкое рассеивающее вещество В. Лучи, рассеянные на угол θ, регистрируются приемником рентгеновских лучей Пр. — рентгеновским спектрографом, в котором измеряется длина волны рассеянных рентге­новских лучей. Опыты Комптона показали, что длина волны λ’ рассеянного света больше длины волны λ падающего свежа, причем разность λ’ – λ зависит только от угла рассеяния θ:

— комптоновская длина волны, определяется массой исследуемого вещества.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света.

В легких атомах электроны слабо связаны с ядрами, поэтому электроны можно считать свободным. Тогда эффект Комптона — результат упругого столкновения рентгеновских фотонов со свободными электронами. Для упругого столкновения выполняется закон сохранения энергии и закон сохранения импульса.

Закон сохранения энергии для эффекта Комптона (энергия системы до взаимодействия равняется энергия системы после взаимодействия)

Читайте также:  Зарядное устройство power bank 20000 mah с солнечной батареей

где — энергия падающего фотона,

m c — энергия покоящегося электрона,

hν’ — энергия рассеянного фотона,

hν + m c — энергия до взаимодействия.

Закон сохранения импульса для эффекта Комптона:

— импульс падающего фотона;

р’ — импульс электрона отдачи;

— импульс рассеянного фотона.

Масса релятивистской частицы

(1)

(2)

Возведем в квадрат и учтем, что

(3)

(4)

Сравнивая (3) и (4) получим:

Умножим на и получим

следовательно,

Корпускулярно-волновая двойственность свойств света

В таких опытах как интерференция, дифракция, поляризация, дисперсия проявляются волновые свойства света и для описания света используются волновые характеристика: λ,ν. В эффектах квантовой оптики: тепловое излу­чение, фотоэффект, фотохимическое действие света, давление света, эффект Комптона, свет проявляет себя как частица и для его описания используются корпускулярные характеристики: масса, импульс. Развитие оптики, вся совокупность оптических явлений показали, что свойства непрерывности, характерные для электромагнитного поля световой волны не следует противопоставлять свойствам дискретности, характерным для фотонов. Свет имеет сложные корпускулярно-волновые свойства: обладает одновременно и волновыми и квантовыми свойствами — корпускулярно-волновая дуализм (двойственность) свойств света.

Связь корпускулярных и волновых свойств света отражают формулы для энергии, импульса, массы фотона:

Волновые свойства играют определенную роль в закономерностях рас­пространения света, интерференции, дифракции, поляризации, а корпускулярные в процессах взаимодействия света с веществом. Чем больше λ (меньше ν), тем меньше р и Е фотона и тем труднее обнаружить квантовые свойства света (например, фотоэффект происходит только при hv > Aвыx). Чем меньше λ (больше ν), тем труднее обнаружить волновые свойства света. Например, рентгеновские лучи λ

10 -10 м дифрагируют только на кристаллической решетке твердого тела.

Взаимосвязь между волновыми и орпускулярными свойствами света объясняют с помощью статических методов.

Волновые свойства присущи не только большой совокупности фотонов, но и каждому фотону в отдельности.

Источник