Меню

Все инновации солнечных батареях

Новые технологии в солнечной энергии

Главный источник энергии для всего живого на Земле – Солнце. Именно на этом в последнее время делают акцент разработчики инноваций в сфере энергетики. Применение солнечной энергии находит новые сферы с каждым днём, поэтому актуальность таких разработок постоянно повышается.

Энергетика, медицина, автомобилестроение, обустройство жилых и офисных помещений, осветительная техника – все области, в которых задействованы разработки, связанные с потреблением солнечной энергии, сложно перечислить. Свои новинки компании-разработчики представляют на разнообразных конференциях, эксповыставках и научных семинарах.

Кровельная плитка на фотоэлементах

Разработан новый многофункциональный кровельный материал, который обладает всеми необходимыми качествами для герметичной кровли крыш и сочетает в себе встроенные фотоэлементы.

Подобная черепица оснащена капсулами из прозрачного прочного стекла, в которых размещаются ультратонкие солнечные батареи, с точностью повторяющие форму наружной поверхности черепицы. Коэффициент эффективности такой кровельной плитки очень высокий – до 17,5%, что является впечатляющим значением с области данного типа батарей.

В зависимости от площади крыши такая кровля может решить все энергетические проблемы частного дома. Строительные компании уже заинтересовались этой новинкой, поэтому в скором будущем можно ожидать быстрого распространения фотоэлектрической плитки в строительстве многих объектов.

Двухсторонние батареи

Настоящий фурор произвела совместная идея германских и сингапурских учёных, представивших двухсторонний солнечный модуль. Новшество касается того, что на той же площади батарей почти с теми же затратами можно вырабатывать на 30% больше электроэнергии, чем это было возможно ранее.

Принцип основан на том, что фотоэлементы должны располагаться как на поверхности, обращённой к солнцу, так и на теневой стороне, которая в это же время поглощает солнечный свет. Кроме того, такие установки имеют длительный срок эксплуатации за счёт надёжности каждого из элементов. По самым скромным прогнозам использовать такие двухсторонние модули можно будет не менее 30 лет.

Мощность модулей значительно превосходит те, которые до сих пор имелись на энергосберегающем рынке, а это позволит монтировать их даже в регионах с малым количеством солнечных дней и с сильными морозами, где использование солнечной энергии в прежние годы не было целесообразно.

На данный момент ведутся переговоры с промышленными предприятиями, на которых начнётся массовый выпуск двухсторонних модулей. Выход товара на строительный рынок ожидается уже через 1,5-2 года.

Батареи на основе перовскита

Для преобразования фотоэлектрической энергии используются тонкоплёночные технологии на основе кремнийсодержащих составов. Напыление таких составов производится в условиях вакуума, что делает их изготовление дорогостоящим и ведёт к выделению загрязняющих веществ.

Группа английских учёных предложила новое решение, которое удешевляет этот процесс. В фотоэлементах вместо кремния содержится сложный минерал – перовскит. При помощи этого вещества можно эффективно преобразовывать энергию солнца в электричество не только под прямыми лучами, но и в условиях пасмурной или дождливой погоды.

С повсеместным внедрением перовскита можно ожидать стабильного использования фотоэлементов на протяжении круглого года в любых климатических условиях.

Гибкие элементы

Ещё одна инновационная технология в преобразовании солнечной энергии коснулась стоимости получения электричества с помощью особого химического соединения, используемого в фотоэлементах. При массовом выпуске разница в цене составит 5-6 раз.

Основная разница заключается в том, что классические кремниевые элементы для преобразования солнечной энергии очень жёсткие, хрупкие и довольно тяжёлые. Изготовленные с использованием нового сплава батареи настолько тонкие, что по толщине сопоставимы с газетной бумагой, которую можно свернуть в рулон или придать ей любую сложно изогнутую форму.

Такое новшество резко расширяет возможность применения гибких элементов. Во-первых, новый состав очень недорогой, а во-вторых, элементы для таких батарей можно изготавливать на простых принтерах, что исключает сложные производства.

Инновации в автотранспорте

Самым удачным опытом применения солнечной энергии во время авиаперелётов стал лайнер Solar Impuls-2. Используя исключительно энергию света, он смог провести в полёте более 510 часов, что стало абсолютным рекордом в этой области. Самолёт облетел вокруг света, пересёк несколько океанов и совершил за это время всего пару посадок из-за плохих погодных условий. 120 часов он безостановочно пребывал в воздухе, что считается невозможным для авиасредств на жидком топливе.

Элемент, расположенный на верхней панели самолёта, использует систему «сэндвич», совмещающую 8 слоёв. По каскадам этих прослоек свет проходит путь преобразования в электроток. Раньше слои соединялись последовательно, меняя полярность. В данном проекте применили параллельное соединение, что сразу подняло КПД системы почти в 1,5 раза.

Защитное покрытие

Одной из основных проблем солнечной энергетики с первых шагов являлся фактор пылевого и грязевого загрязнения. При использовании под открытым небом модули быстро покрывались небольшим слоем пыли, который становился толще с каждым днём. Это снижало эффективность системы в разы.

В этом году презентована разработка панелей, оснащённых защитным покрытием. Фотоэлементы на верхней поверхности имеют добавочный двойной слой, половина которого защищает от пыли и грязи, а вторая часть снижает бликовую активность, что позволяет участвовать в процессе большему количеству самых ярких и эффективных лучей.

Бытовые приборы

Новинки солнечной энергетики не обошли стороной и бытовую технику. Презентовано несколько интересных новинок, самая впечатляющая из которых представляет собой гриль GoSun. С его помощью легко можно тушить, варить, жарить и готовить на пару блюда на 8 персон с использованием чистой природной энергии.

Читайте также:  Презентация по солнечной батареями

В таких приборах тепло аккумулируется внутри вакуумной трубки благодаря наличию алюминиевых листов-концентраторов, которые разогревают внутреннюю часть печки-гриль до 200°С за 2 минуты.

Ещё одним позитивным моментом является то, что при приготовлении таким способом не вырабатывается вредный дым, который загрязняет атмосферу и способствует развитию парникового эффекта.

Авто на солнечных батареях

Ещё одной новинкой в технологиях солнечной энергии стала разработка семейного авто Stella, которое может перевозить небольшое семейство из 4 человек. Попытки создать подобную машину были и раньше, но только сейчас технологии позволили сделать её конкурентоспособной на авторынке.

Устранены главные недостатки: медленная скорость и небольшой запас энергии. Теперь авто может ехать со скоростью 110 км/час, чего более чем достаточно для семейного транспорта. После наступления темноты накопленной световой энергии хватит ещё на 600 км пути – это действительно впечатляющая цифра.

Если ко всем достоинствам присоединить то, что Stella работает практически бесшумно и совершенно не производит вредных выхлопных газов, то становится понятно, что развитие такого типа автотранспорта является очень перспективным направлением для энергетики.

Оконное отопление

Очередное открытие позволило превратить поверхность окон в эффективную батарею. На стекло наносят специальный состав, который активно поглощает лучи солнца. Свет аккумулируется и преобразовывается в электроэнергию.

Нанесение состава не делает стекло непрозрачным, поскольку плёнка очень тонкая и совершенно бесцветная. Кроме того, разработка позволяет потреблять не только прямые лучи, но и рассеянный свет при пасмурной погоде. Такие фотоэлементы не портят внешний вид здания и не требуют добавочного места для монтажа.

Таким образом, становится понятно, что технологии солнечной энергетики проникли во все сферы жизни и промышленности, делая её удобнее и заменяя невозобновляемые ресурсы, которые постоянно увеличиваются в стоимости.

Источник

Современные солнечные панели

На протяжении многих тысячелетий человечество использовало природные ресурсы для получения энергии. Начиная с дров, которые сжигали, чтобы согреться и приготовить пищу, и заканчивая атомной энергетикой. Земные запасы оказались невечными, а потребности современного общества несопоставимо высокими, по сравнению с процессами возобновления. Самым перспективным направлением в поисках альтернативных источников энергии стали новые технологии солнечных панелей.

Гениальное изобретение

Уже в конце XIX ст. ученые стали задумываться над использованием энергии Солнца. Поводом послужила работа известного французского физика А. Беккереля – «Электрические явления, происходящие от освещения тел». В ней он описал фотовольтаический эффект – возникновения напряжения или электрического тока в веществах под воздействием света. Неоценимый вклад в 1873 г. сделал английский инженер-электрик У. Смит, открывший фотопроводимость селена. В 1887 г. немецкий физик Герц открыл внешний фотоэффект, изучив выход электронов из вещества при воздействии на него светом.

Еще более полувека ученые трудились над созданием прямого преобразователя света в электроэнергию. В 1950-х гг. специалистами компании Bell Laboratories была создана первая полноценная солнечная панель. Новые технологии сразу вызвали огромный интерес в космической сфере и, спустя всего 4 года, в космос были запущены американский и советский спутники, оснащенные солнечными батареями.

Солнечная энергия сегодня

Казалось бы, зачем строить ядерные реакторы, когда чуть более чем в 8 световых минутах от нас находится термоядерный источник колоссальной энергии – Солнце. Если представить мощность фотонного потока в Ваттах, то в среднем с учетом полюс-экватор, день-ночь и лето-зима, получится 325 Вт на 1 м². Учитывая площадь поверхности земли – 510,1 млн. км², выходит, что наша планета постоянно принимает 165,7 триллионов кВт в час.

За одни сутки от Солнца на Землю поступает столько энергии, сколько не смогут выработать за год все электростанции мира.

Преобразование световой энергии

В настоящее время использование энергии Солнца стало актуальной задачей. Ведь это самый дешевый и экологически чистый способ получения электроэнергии и тепла. По сравнению с ТЭС, конечная цена электроэнергии для потребителя обходится на 80% дешевле. Потребность в альтернативных источниках недорогой электроэнергии повысила спрос на солнечные батареи, а конкуренция между производителями дала стимул научным разработкам новых технологий.

Существует 3 способа преобразования световой энергии, которые уже широко применяются по всему миру.

Солнечные коллекторы

Это самый простой способ с применением недорогого оборудования. Принцип действия заключается в нагревании воды Солнцем. Такие установки до недавнего времени применялись в основном только в жарких странах для горячего водоснабжения. Современные коллекторы, произведенные в России, рассчитаны для эксплуатации в северных регионах. При температуре на улице — 10°C в ясную погоду они нагревают воду до 80-90°C.

Читайте также:  Солнечные батареи для судов

Солнечные реакторы

Сравнительно новая технология, которая активно внедряется в Германии. Изначально установка была задумана для получения дешевого водорода без причинения вреда окружающей среде. Сам водород ‒ это самое экологическое топливо. В отличие от углеводородов, продукт его сгорания ‒ обыкновенный водяной пар (H2 + 0,5 O2 → H2O). В ходе разработок был получен целый энергетический комплекс, способный обеспечить частное хозяйство электроэнергией, горячим водоснабжением и отоплением. В хорошую погоду электроэнергию вырабатывают батареи, а излишки энергии расходуются на получение водорода. При недостатке генерированного электричества, в ход пускается накопленный водород. Ведущие производители таких комплексных систем ‒ это компании HPS Home Power Solutions GmbH и CNX Construction.

Солнечные панели

Прямое преобразование энергии Солнца в электрическую постоянно совершенствуется и расширяется. Стремительный рост внедрения СЭС подтверждается статистикой. В 2005 общая мощность солярных проектов составляла всего 5 ГВт, а уже в 2014 – 150 ГВт. Сегодня в мире существует множество таких электростанций, самые крупные из которых:

  • «Топаз», Калифорния – 1096 МВт;
  • «Agua Caliente», Аризона – 626 МВт;
  • «Mesquite», Аризона – 413 МВт;
  • «Solar Ranch», Калифорния – 399 МВт;
  • «Хуанхэ», Цинхай – 317 МВт;
  • «Каталина», Калифорния – 204 МВт;
  • «Xitieshan», Цинхай – 150 МВт;
  • «Нинся Qingyang», Нинся – 150 МВт;
  • «Перово», Крым – 133 МВт;
  • «Серебро», Невада – 122 МВт.

В России в настоящий момент работает 23 СЭС общей мощностью 250,318 МВт. К тому же применяемое оборудование постоянно модернизируется, а мощности наращиваются.

В настоящее время в стадии проектирования и строительства на территории РФ находится 31 СЭС.

Кроме крупномасштабных энергетических проектов, солнечные батареи все больше применяются в быту и в различного рода устройствах. Их устанавливают на крышах частных домов, на опорах уличного освещения, встраивают в портативные зарядные устройства, вычислительную технику и автономные приборы освещения для придомовой территории.

Среди самых необычных решений можно отметить велодорожку в Нидерландах и километровый участок автодороги во Франции, выполненные с покрытием из фотоэлементов, а в Корее разработали батарею-имплантат. Он в 15 раз тоньше волоса, предназначен для вживления под кожу и способен питать имплантированные приборы.

Принцип действия

Светоприёмная панель состоит из ячеек (модулей), которые выполняются из двуслойного полупроводникового материала, обладающего свойством фотопроводимости. Верхний слой полупроводника типа «n» имеет отрицательный потенциал, а нижний типа «p» ‒ положительный. При попадании на верхний слой лучей света происходит внешний фотоэффект. Другими словами, полупроводник «n» начинает отдавать электроны. В это же время нижний слой «p», наоборот, способен захватывать электроны. Таким образом, если замкнуть цепь, подсоединив нагрузку к слоям, электроны, покинувшие верхний слой, устремятся через нагрузку к нижнему слою. Затем через p-n переход опять возвращаются в верхний слой.

Реальные достижения

Для создания модулей применяется множество материалов, самыми эффективными по лабораторным исследованиям оказались многослойные фотоэлементы типа GaInP/GaAs/Ge, показавшие коэффициент фотоэлектрического преобразования 32%. При этом в реальности были установлены значительно большие рекордные показатели.

Компания Sharp в 2013 г. создала трехслойный фотоэлемент на индиево-галлий-арсенидной основе, который показал результат КПД 44,4%. Их рекорд в этом же году превзошли ученые Института систем солнечной энергии общества Фраунгофера. В конструкции своего фотоэлемента они применили линзы Френеля, чем добились показателя в 44,7%. Через год они превзошли сами себя и, благодаря особой фокусировке, линзы смогли достичь КПД 46%.

Современные разработки

Одно из перспективных направлений ‒ преобразование в электроэнергию всех спектров излучения. Разработки в этом направлении ведутся многими компаниями, институтами, научными центрами и результаты уже есть.

Теория наноантенн

Идея преобразования излучения Солнца в электрический ток по принципу выпрямляющей антенны, работающей в диапазоне оптических волн 0,4-1,6 мкм, появилась еще в 1972 г. и принадлежит Р. Бейли. Потенциальный КПД таких антенн в теории составит 85%. Первая попытка создать солярный преобразователь на наноантеннах была предпринята в 2002 г. компанией ITN Energy Systems, которая не увенчалась успехом. Несмотря на это, данная методика рассматривается как наиболее перспективная и исследования продолжаются.

Фотоэлементы на основе перовскита

Сегодня этот материал, как альтернатива кремнию, наиболее популярный среди производителей. Его стоимость намного дешевле, что в конечном итоге положительно влияет на цену продукта. При этом в его состав входит токсичный свинец, который долгое время пытались заменить. Группа нидерландских ученых, работая над этим вопросом, случайно совершила открытие.

Свинец заменили оловом и при тестовых исследованиях заметили странное явление. «Горячие электроны», то есть электроны с повышенной энергией, отдавали ее через несколько наносекунд, вместо нескольких сотен фемтосекунд, что значительно дольше. В обычных панелях такие электроны преобразовываются в тепло, а не в электричество. В данном случае за счет медлительности электронов появляется возможность преобразовать их в электроэнергию, до того, как они станут теплом.

Пока ученые выясняют, почему горячие электроны замедляют свое рассеивание и как можно заставить их рассеиваться еще медленнее. По словам профессора фотофизики и оптоэлектроники М. Лои, теоретические прогнозы КПД такой батареи составят 66%.

Идеальное излучение

Чтобы решить проблему поглощения светоэлементом всего спектра излучения Солнца, команда исследователей из Хайфа (Израиль) предложили нестандартное решение. В опытах они решили преобразовать солнечный свет в идеальное излучение. Для этого они разработали и применили уникальный фотолюминесцентный материал. Подобная технология используется в светодиодных лампах, где диодное свечение поглощается люминофором и преобразовывается в свечение, оптимальное для восприятия человеком. В случае с элементом, материал преобразует весь спектр излучения в свет, идеально поглощающийся панелью. По утверждению молодых ученых, преобразование света позволит увеличить конверсию в электричество до 50%.

Читайте также:  Батарейки для солнечного панелями

Многослойные панели для установки на крыше

Ранее ученые из университета Нового Южного Уэльса предложили концентрировать излучение Солнца с помощью зеркал. Такая методика позволила значительно увеличить эффективность работы элементов. Сегодня эта технология применяется на множестве СЭС, однако для батарей, устанавливаемых на крышах частных домов, такая конструкция невозможна. Увеличить эффективность преобразования неконцентрированного света до 53% предложили разработчики германского научного центра Agora Energiewende.

В основе их изобретения лежит многослойная панель способная поглощать 4 диапазона света. Специальный преломляющий слой отражает инфракрасный спектр к кремниевой части и пропускает остальной свет к трехслойной панели. Первый слой ‒ индий-галлий-фосфид, второй – индий-галлий-арсенид и третий ‒ германий. Каждый поглощает свет в определенном диапазоне, и в результате получается «выжать» максимум энергии.

Теоретически конструкция идеальна, но на практике для применения на крыше возникли проблемы со сложностью обслуживания. Пока разрабатываемая для частного сектора батарея больше подходит для электростанций, но работы по ее усовершенствованию продолжаются.

Энергия днем и ночью

Особое внимание многих научных изданий привлекли разработки китайских ученых. Это не удивительно, ведь Китай в этой области держит первенство и является крупнейшим поставщиком солнечных панелей, пользующихся спросом по всему миру.

Китайские разработчики предложили панель, работающую не только в светлое время суток, но и ночью. Секрет заключается в слое люминофора с длительным послесвечением. Днем непоглощённый фотоэлементом свет задерживается люминофором, который светится ночью, отдавая энергию фотоэлементам. Хотя ночное КПД составляет всего 25%, такие батареи смогут значительно повысить эффективность солнечной энергетики.

Инженерные решения

С ростом СЭС по всему миру появляется новая проблема, особо актуальная для европейских стран. Для строительства таких электростанций необходимо большое пространство. В некотором плане эту проблему решают интеграцией фотоэлементов в дорожное покрытие и установкой светоприёмников на крышах. Но часто приходится модернизировать кровельные конструкции, а в некоторых случаях установка противоречит архитектурным особенностям. Актуальность повышения интеграционных возможностей солнечных батарей приобрела критическую отметку, поэтому над этим сегодня работают ведущие инженеры и архитекторы.

Кровля из фотоэлементов

Интересную конструкцию на конференции Solar Power International 2017 в Лас-Вегасе представила компания Hanergy. Кровельная плитка Hantiles представляет собой волнообразную черепицу со встроенными фотоэлементами. Совместив кровельный материал и фотоэлементы, сохраняется эстетический вид постройки, а кровельная конструкция не требует дополнений. К тому же по стоимости получается дешевле, чем приобретать отдельно кровлю и панели.

Облицовка стен солнечными панелями

Швейцарский центр микротехники и электроники «CSEM» предложил новую технологию по производству наружных стеновых облицовочных панелей, которые одновременно являются еще и солнечными. Особенность заключается в сохранении качеств облицовочного материала. Панели выглядят монотонно и обладают высокими тепло- и звукоизоляционными свойствами. Пока были представлены только белые варианты, но разработчики говорят, что возможен любой цвет.

Окна с фотоэлементами

Скоро вместо энергосберегающих окон можно будет устанавливать энергогенерирующие. Инновационное окно от разработчиков национальной лаборатории Лос-Аламоса визуально ничем не отличается от простых окон. При этом в них применен однокамерный стеклопакет со встроенными квантовыми точками на основе марганца на внешнем стекле и на основе селенид меди-индия на внутреннем. Стекла выступают в роли люминесцентного концентратора и, поглощая свет, перенаправляют его к краям рамы, где он преобразуется в электроэнергию встроенными фотоэлементами.

Еще дальше пошли немецкие инженеры из Йенского университета. Они предложили смарт-окна. Идея «умных» окон не новая. Раньше другими разработчиками предлагались стекла, изменяющие светопрозрачность и вырабатывающие электроэнергию за счет заламинированных фотоэлементов. В этот раз применена принципиально новая технология LaWin. Теперь к функциям окон добавилась способность работать как освещение и отопление.

Подзарядка на ходу

Японские разработчики из института RIKEN и Токийского университета изобрели ультратонкий гибкий фотоэлемент, который не боится воды и растягивающих нагрузок. При интеграции такой батареи в текстиль можно создавать одежду с возможностью подключения мобильных устройств или любой другой электроники.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *